基于光学跟踪信息生成用于经颅聚焦超声手术的患者特异性声学模拟。

Generating Patient-Specific Acoustic Simulations for Transcranial Focused Ultrasound Procedures Based on Optical Tracking Information.

作者信息

Sigona Michelle K, Manuel Thomas J, Anthony Phipps M, Boroujeni Kianoush Banaie, Treuting Robert Louie, Womelsdorf Thilo, Caskey Charles F

机构信息

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA.

Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA.

出版信息

IEEE Open J Ultrason Ferroelectr Freq Control. 2023;3:146-156. doi: 10.1109/ojuffc.2023.3318560. Epub 2023 Sep 25.

Abstract

Optical tracking is a real-time transducer positioning method for transcranial focused ultrasound (tFUS) procedures, but the predicted focus from optical tracking typically does not incorporate subject-specific skull information. Acoustic simulations can estimate the pressure field when propagating through the cranium but rely on accurately replicating the positioning of the transducer and skull in a simulated space. Here, we develop and characterize the accuracy of a workflow that creates simulation grids based on optical tracking information in a neuronavigated phantom with and without transmission through an skull cap. The software pipeline could replicate the geometry of the tFUS procedure within the limits of the optical tracking system (transcranial target registration error (TRE): mm). The simulated focus and the free-field focus predicted by optical tracking had low Euclidean distance errors of and mm for phantom and skull cap, respectively, and some skull-specific effects were captured by the simulation. However, the TRE of simulation informed by optical tracking was , which is as large or greater than the focal spot size used by many tFUS systems. By updating the position of the transducer using the original TRE offset, we reduced the simulated TRE to mm. Our study describes a software pipeline for treatment planning, evaluates its accuracy, and demonstrates an approach using MR-acoustic radiation force imaging as a method to improve dosimetry. Overall, our software pipeline helps estimate acoustic exposure, and our study highlights the need for image feedback to increase the accuracy of tFUS dosimetry.

摘要

光学跟踪是一种用于经颅聚焦超声(tFUS)手术的实时换能器定位方法,但光学跟踪预测的焦点通常未纳入个体特异性颅骨信息。声学模拟可以估计声波穿过颅骨时的压力场,但依赖于在模拟空间中准确复制换能器和颅骨的定位。在此,我们开发并表征了一种工作流程的准确性,该流程基于在有或没有穿过颅骨帽的神经导航体模中的光学跟踪信息创建模拟网格。该软件管道能够在光学跟踪系统的限制范围内复制tFUS手术的几何结构(经颅目标配准误差(TRE): 毫米)。对于体模和颅骨帽,模拟焦点与光学跟踪预测的自由场焦点的欧几里得距离误差分别较低,为 毫米和 毫米,并且模拟捕捉到了一些颅骨特异性效应。然而,由光学跟踪告知的模拟TRE为 ,这与许多tFUS系统使用的焦斑尺寸一样大或更大。通过使用原始TRE偏移更新换能器的位置,我们将模拟TRE降低到了 毫米。我们的研究描述了一种用于治疗计划的软件管道,评估了其准确性,并展示了一种使用磁共振声辐射力成像作为改善剂量测定方法的途径。总体而言,我们的软件管道有助于估计声暴露,并且我们的研究强调了图像反馈对于提高tFUS剂量测定准确性的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59bb/10785958/14445a410f58/nihms-1936121-f0008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索