Suppr超能文献

用于模拟细胞色素P450(CYPs)介导的药物代谢重要方面的当前化学信息学工具综述。将代谢数据与其他生物学特征相结合以加强药物发现。

Review of current chemoinformatic tools for modeling important aspects of CYPs-mediated drug metabolism. Integrating metabolism data with other biological profiles to enhance drug discovery.

作者信息

Speck-Planche Alejandro, Cordeiro Maria Natalia Dias Soeiro

机构信息

REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.

出版信息

Curr Drug Metab. 2014;15(4):429-40. doi: 10.2174/1389200215666140605124002.

Abstract

The study of the metabolism of xenobiotics by the human body is an essential stage in the complex and expensive process of drug discovery, being one of the main causes of disapproval and/or withdrawal of drugs. Regarding this, enzymes known as cytochromes P450 (CYPs) play a very decisive role in the biotransformation of many chemicals. For this reason, the use of chemoinformatics to predict and /or analyze from different points of view CYPs-mediated drug metabolism, can help to reduce time and financial resources. This work is focused on the most remarkable advances in the last 5 years of the chemoinformatics tools towards the virtual analysis of CYPsmediated drug metabolism. First, a brief section is dedicated to the applicability of chemoinformatics in different areas associated with drug metabolism. Then, both the models for prediction of CYPs substrates and those allowing the assessment of sites of metabolism (SOM) are discussed. At the same time, the principal limitations of the current chemoinformatic tools are pointed out. Finally, and taking into account that metabolism is an essential step in the whole process of designing any drug, we introduce here as a case of study, the first multitasking model for quantitative-structure biological effect relationships (mtk-QSBER). The purpose of this model is to integrate different types of biological profiles such as ADMET (absorption, distribution, metabolism, excretion, toxicity) profiles and antistaphylococci activities. The mtk-QSBER model was created by employing a heterogeneous dataset of more than 66000 cases tested in 6510 different experimental conditions. The model displayed a total accuracy higher than 94%. To the best of our knowledge, this is the first attempt to complement metabolism assays with other relevant biological data in order to speed up the discovery of efficacious antistaphylococci agents.

摘要

人体对外源物质的代谢研究是复杂且昂贵的药物研发过程中的一个重要阶段,是导致药物不被批准和/或撤回的主要原因之一。关于这一点,被称为细胞色素P450(CYPs)的酶在许多化学物质的生物转化中起着非常决定性的作用。因此,利用化学信息学从不同角度预测和/或分析CYPs介导的药物代谢,有助于减少时间和资金资源。这项工作聚焦于过去五年化学信息学工具在CYPs介导的药物代谢虚拟分析方面的最显著进展。首先,简要介绍化学信息学在与药物代谢相关的不同领域的适用性。然后,讨论了CYPs底物预测模型和代谢位点(SOM)评估模型。同时,指出了当前化学信息学工具的主要局限性。最后,考虑到代谢是任何药物设计全过程中的关键步骤,我们在此引入作为案例研究的第一个定量结构生物效应关系多任务模型(mtk-QSBER)。该模型的目的是整合不同类型的生物学特征,如ADMET(吸收、分布、代谢、排泄、毒性)特征和抗葡萄球菌活性。mtk-QSBER模型是通过使用在6510种不同实验条件下测试的超过66000个案例的异构数据集创建的。该模型的总体准确率高于94%。据我们所知,这是首次尝试用其他相关生物学数据补充代谢分析,以加速有效抗葡萄球菌药物的发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验