Kesavan Srinivasan, John S Abraham
Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram 624 302, Dindigul, Tamil Nadu, India.
Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram 624 302, Dindigul, Tamil Nadu, India.
J Colloid Interface Sci. 2014 Aug 15;428:84-94. doi: 10.1016/j.jcis.2014.04.038. Epub 2014 Apr 26.
The spontaneous grafting of aminophenyl groups on gold nanoparticles (AuNPs) by reaction with in situ generated 4-aminophenyl diazonium cations (APD) in an aqueous medium was described. The spontaneous grafting was likely to proceed by transfer of electrons from AuNPs to the APD cations to form an aminophenyl radical and subsequent attachment with AuNPs. The aminophenyl (AP) functionalized gold nanoparticles (AP-AuNPs) were characterized by UV-visible spectroscopy, high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction, FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman spectroscopy (SERS). The absence of characteristic vibrational bands corresponding to diazonium group in the FT-IR spectrum confirmed the reduction of the aminophenyl diazonium cations at the surface of AuNPs. The spontaneous attachment of AP on AuNPs was confirmed by XPS from the observed binding energy values for -NH2 at 399.4 eV and -N=N- at 400.2 eV. The SERS spectrum reveals the presence Au-C (437 cm(-1)) bond on AP-AuNPs. Further, the AP-AuNPs were self-assembled on GC/ITO electrode (AP-AuNPs modified electrode) with the aid of free amine groups present on the surface of AP-AuNPs via Michael's nucleophilic addition reaction. The AP-AuNPs modified electrode was characterized by cyclic voltammetry, impedance spectroscopy, UV-visible spectroscopy and scanning electron microscopy. Impedance studies show that the electron transfer reaction of Fe(CN)6 was higher at the AP-AuNPs modified electrode (1.81×10(-4) cm s(-1)) than at bare (3.77×10(-5) cm s(-1)) GC electrode. Finally, the electrocatalytic activity of the AP-AuNPs modified electrode was demonstrated by studying the oxidation of dopamine (DA).
描述了在水介质中,通过与原位生成的4-氨基苯重氮阳离子(APD)反应,氨基苯基在金纳米颗粒(AuNPs)上的自发接枝过程。这种自发接枝可能是通过电子从AuNPs转移到APD阳离子上,形成氨基苯基自由基,随后与AuNPs结合来进行的。通过紫外可见光谱、高分辨率透射电子显微镜(HR-TEM)、X射线衍射、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)和表面增强拉曼光谱(SERS)对氨基苯基(AP)功能化的金纳米颗粒(AP-AuNPs)进行了表征。FT-IR光谱中对应重氮基团的特征振动带的缺失,证实了AuNPs表面氨基苯重氮阳离子的还原。XPS通过观察到的-NH2在399.4 eV和-N=N-在400.2 eV的结合能值,证实了AP在AuNPs上的自发附着。SERS光谱揭示了AP-AuNPs上存在Au-C(437 cm(-1))键。此外,借助AP-AuNPs表面存在的游离胺基团,通过迈克尔亲核加成反应,将AP-AuNPs自组装在GC/ITO电极上(AP-AuNPs修饰电极)。通过循环伏安法、阻抗谱、紫外可见光谱和扫描电子显微镜对AP-AuNPs修饰电极进行了表征。阻抗研究表明,Fe(CN)6在AP-AuNPs修饰电极(1.81×10(-4) cm s(-1))上的电子转移反应比在裸GC电极(3.77×10(-5) cm s(-1))上更高。最后,通过研究多巴胺(DA)的氧化,证明了AP-AuNPs修饰电极的电催化活性。