Lu Yen-Yu, Chung Fa-Po, Chen Yao-Chang, Tsai Chin-Feng, Kao Yu-Hsun, Chao Tze-Fan, Huang Jen-Hung, Chen Shih-Ann, Chen Yi-Jen
Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan.
J Cell Mol Med. 2014 Aug;18(8):1540-8. doi: 10.1111/jcmm.12329. Epub 2014 Jun 9.
Ventricular arrhythmias commonly originate from the right ventricular out-flow tract (RVOT). However, the electrophysiological characteristics and Ca(2+) homoeostasis of RVOT cardiomyocytes remain unclear. Whole-cell patch clamp and indo-1 fluorometric ratio techniques were used to investigate action potentials, Ca(2+) homoeostasis and ionic currents in isolated cardiomyocytes from the rabbit RVOT and right ventricular apex (RVA). Conventional microelectrodes were used to record the electrical activity before and after (KN-93, a Ca(2+) /calmodulin-dependent kinase II inhibitor, or ranolazine, a late sodium current inhibitor) treatment in RVOT and RVA tissue preparations under electrical pacing and ouabain (Na(+) /K(+) ATPase inhibitor) administration. In contrast to RVA cardiomyocytes, RVOT cardiomyocytes were characterized by longer action potential duration measured at 90% and 50% repolarization, larger Ca(2+) transients, higher Ca(2+) stores, higher late Na(+) and transient outward K(+) currents, but smaller delayed rectifier K(+) , L-type Ca(2+) currents and Na(+) -Ca(2+) exchanger currents. RVOT cardiomyocytes showed significantly more pacing-induced delayed afterdepolarizations (22% versus 0%, P < 0.05) and ouabain-induced ventricular arrhythmias (94% versus 61%, P < 0.05) than RVA cardiomyocytes. Consistently, it took longer time (9 ± 1 versus 4 ± 1 min., P < 0.05) to eliminate ouabain-induced ventricular arrhythmias after application of KN-93 (but not ranolazine) in the RVOT in comparison with the RVA. These results indicate that RVOT cardiomyocytes have distinct electrophysiological characteristics with longer AP duration and greater Ca(2+) content, which could contribute to the high RVOT arrhythmogenic activity.
室性心律失常通常起源于右心室流出道(RVOT)。然而,RVOT心肌细胞的电生理特性和Ca(2+) 稳态仍不清楚。采用全细胞膜片钳和indo-1荧光比率技术研究兔RVOT和右心室心尖(RVA)分离心肌细胞的动作电位、Ca(2+) 稳态和离子电流。在电起搏和给予哇巴因(Na(+) /K(+) ATP酶抑制剂)的情况下,使用传统微电极记录RVOT和RVA组织标本在(KN-93,一种Ca(2+) /钙调蛋白依赖性激酶II抑制剂,或雷诺嗪,一种晚钠电流抑制剂)处理前后的电活动。与RVA心肌细胞相比,RVOT心肌细胞的特征在于在复极化90%和50%时测量的动作电位持续时间更长、Ca(2+) 瞬变更大、Ca(2+) 储备更高、晚Na(+) 和瞬时外向K(+) 电流更高,但延迟整流K(+) 、L型Ca(2+) 电流和Na(+) -Ca(2+) 交换电流更小。与RVA心肌细胞相比,RVOT心肌细胞表现出明显更多的起搏诱导延迟后去极化(22%对0%,P < 0.05)和哇巴因诱导的室性心律失常(94%对61%,P < 0.05)。同样,与RVA相比,在RVOT中应用KN-93(而非雷诺嗪)后消除哇巴因诱导的室性心律失常所需时间更长(9±1对4±1分钟,P < 0.05)。这些结果表明,RVOT心肌细胞具有独特的电生理特性,动作电位持续时间更长且Ca(2+) 含量更高,这可能导致RVOT具有较高的致心律失常活性。