Suppr超能文献

小研究人群比例死亡率分析中的偏倚:以辐射和间皮瘤分析为例。

Bias in the proportionate mortality ratio analysis of small study populations: a case on analyses of radiation and mesothelioma.

机构信息

Office of Domestic and International Health Studies, Office of Health, Safety and Security, Department of Energy , S. W. Washington D.C. , USA.

出版信息

Int J Radiat Biol. 2014 Nov;90(11):1075-9. doi: 10.3109/09553002.2014.931611. Epub 2014 Aug 11.

Abstract

UNLABELLED

Abstract Purpose: To quantify bias in the proportionate mortality ratio (PMR) analysis of small study populations and develop a bias correction methodology.

MATERIALS AND METHODS

Bias in the PMR analysis of small study populations is quantified through algebraic derivation. A simulation procedure is developed to evaluate the relationship between bias and study population size. A recently published PMR analysis of radiation and mesothelioma among 329 deceased registrants in the United States Transuranium and Uranium Registries (USTUR) is used as an illustrated example.

RESULTS

The proportionate mortality ratios are biased and overestimated in small population studies; the smaller the study population, the larger the overestimation. As such, the average overestimation of PMR for mesothelioma in the analyses of radiation and mesothelioma in USTUR is 7.2% (95% confidence interval = 5.1%, 9.7%); the PMR overestimation is 22.5% (95% confidence interval = 16.8%, 29.1%) when stratified by quartiles of radiation doses.

CONCLUSIONS

The degree of PMR small sample bias is mainly determined by the sample size ratio, which is defined as the ratio of the sample size to the number of disease categories in the reference population. Correction for the bias is recommended when the sample size ratio is less than 5. The quantification and correction algorithm of the PMR small sample bias developed in this research supplements the PMR methodology.

摘要

未加标签

摘要目的

定量分析小样本人群比例死亡率(PMR)分析中的偏倚,并开发一种偏倚校正方法。

材料与方法

通过代数推导来量化小样本人群 PMR 分析中的偏倚。开发了一种模拟程序来评估偏倚与研究人群规模之间的关系。本文使用了最近发表的一项针对美国超铀和铀登记册(USTUR)中 329 名已故登记员的辐射和间皮瘤的 PMR 分析作为说明性示例。

结果

小样本研究中的比例死亡率存在偏倚且被高估;研究人群越小,高估程度越大。因此,在 USTUR 中对辐射和间皮瘤进行的分析中,间皮瘤的 PMR 平均高估为 7.2%(95%置信区间为 5.1%,9.7%);按辐射剂量四分位数分层时,PMR 高估为 22.5%(95%置信区间为 16.8%,29.1%)。

结论

PMR 小样本偏倚的程度主要由样本大小比决定,该比定义为样本大小与参考人群中疾病类别的数量之比。当样本大小比小于 5 时,建议校正偏倚。本研究中开发的 PMR 小样本偏倚的量化和校正算法补充了 PMR 方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验