Neveu C, Dulin F, Lefranc B, Galas L, Calbrix C, Bureau R, Rault S, Chuquet J, Boutin J A, Guilhaudis L, Ségalas-Milazzo I, Vaudry D, Vaudry H, Santos J Sopkova-de Oliveira, Leprince J
Inserm U982, Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Neurotrophic Factors and Neuronal Differentiation Team, Institute for Research and Innovation in Biomedicine (IRIB); Cell Imaging Platform of Normandy (PRIMACEN), IRIB; Normandie Univ, France.
Br J Pharmacol. 2014 Oct;171(19):4425-39. doi: 10.1111/bph.12808. Epub 2014 Sep 5.
The neuropeptide 26RFa and its cognate receptor GPR103 are involved in the control of food intake and bone mineralization. Here, we have tested, experimentally, the predicted ligand-receptor interactions by site-directed mutagenesis of GPR103 and designed point-substituted 26RFa analogues.
Using the X-ray structure of the β2 -adrenoceptor, a 3-D molecular model of GPR103 has been built. The bioactive C-terminal octapeptide 26RFa(19-26) , KGGFSFRF-NH2 , was docked in this GPR103 model and the ligand-receptor complex was submitted to energy minimization.
In the most stable complex, the Phe-Arg-Phe-NH2 part was oriented inside the receptor cavity, whereas the N-terminal Lys residue remained outside. A strong intermolecular interaction was predicted between the Arg(25) residue of 26RFa and the Gln(125) residue located in the third transmembrane helix of GPR103. To confirm this interaction experimentally, we tested the ability of 26RFa and Arg-modified 26RFa analogues to activate the wild-type and the Q125A mutant receptors transiently expressed in CHO cells. 26RFa (10(-6) M) enhanced [Ca(2+) ]i in wild-type GPR103-transfected cells, but failed to increase [Ca(2+) ]i in Q125A mutant receptor-expressing cells. Moreover, asymmetric dimethylation of the side chain of arginine led to a 26RFa analogue, [ADMA(25) ]26RFa(20-26) , that was unable to activate the wild-type GPR103, but antagonized 26RFa-evoked [Ca(2+) ]i increase.
Altogether, these data provide strong evidence for a functional interaction between the Arg(25) residue of 26RFa and the Gln(125) residue of GPR103 upon ligand-receptor activation, which can be exploited for the rational design of potent GPR103 agonists and antagonists.
神经肽26RFa及其同源受体GPR103参与食物摄入和骨矿化的调控。在此,我们通过对GPR103进行定点诱变实验验证了预测的配体 - 受体相互作用,并设计了点取代的26RFa类似物。
利用β2 - 肾上腺素能受体的X射线结构构建了GPR103的三维分子模型。将生物活性C端八肽26RFa(19 - 26),KGGFSFRF - NH2对接至该GPR103模型中,并对配体 - 受体复合物进行能量最小化处理。
在最稳定的复合物中,Phe - Arg - Phe - NH2部分朝向受体腔内部,而N端的Lys残基则位于外部。预测26RFa的Arg(25)残基与位于GPR103第三个跨膜螺旋中的Gln(125)残基之间存在强烈的分子间相互作用。为了通过实验证实这种相互作用,我们测试了26RFa和精氨酸修饰的26RFa类似物激活瞬时转染至CHO细胞中的野生型和Q125A突变型受体的能力。26RFa(10(-6) M)可增强野生型GPR103转染细胞中的[Ca(2+)]i,但在表达Q125A突变型受体的细胞中未能增加[Ca(2+)]i。此外,精氨酸侧链的不对称二甲基化产生了一种26RFa类似物,[ADMA(25)]26RFa(20 - 26),它无法激活野生型GPR103,但可拮抗26RFa诱导的[Ca(2+)]i增加。
总之,这些数据为配体 - 受体激活时26RFa的Arg(25)残基与GPR103的Gln(125)残基之间的功能相互作用提供了有力证据,这可用于合理设计有效的GPR103激动剂和拮抗剂。