Meijer Marieke, Dingemans Milou M L, van den Berg Martin, Westerink Remco H S
Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands.
Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands
Toxicol Sci. 2014 Sep;141(1):103-11. doi: 10.1093/toxsci/kfu110. Epub 2014 Jun 9.
Humans are exposed to distinct structural classes of insecticides with different neurotoxic modes of action. Because calcium homeostasis is essential for proper neuronal function and development, we investigated the effects of insecticides from different classes (pyrethroid: (α-)cypermethrin; organophosphate: chlorpyrifos; organochlorine: endosulfan; neonicotinoid: imidacloprid) and mixtures thereof on the intracellular calcium concentration ([Ca(2+)]i). Effects of acute (20 min) exposure to (mixtures of) insecticides on basal and depolarization-evoked [Ca(2+)]i were studied in vitro with Fura-2-loaded PC12 cells and high resolution single-cell fluorescence microscopy. The data demonstrate that cypermethrin, α-cypermethrin, endosulfan, and chlorpyrifos concentration-dependently decreased depolarization-evoked [Ca(2+)]i, with 50% (IC50) at 78nM, 239nM, 250nM, and 899nM, respectively. Additionally, acute exposure to chlorpyrifos or endosulfan (10μM) induced a modest increase in basal [Ca(2+)]i, amounting to 68 ± 8nM and 53 ± 8nM, respectively. Imidacloprid did not disturb basal or depolarization-evoked [Ca(2+)]i at 10μM. Following exposure to binary mixtures, effects on depolarization-evoked [Ca(2+)]i were within the expected effect additivity range, whereas the effect of the tertiary mixture was less than this expected additivity effect range. These results demonstrate that different types of insecticides inhibit depolarization-evoked [Ca(2+)]i in PC12 cells by inhibiting voltage-gated calcium channels (VGCCs) in vitro at concentrations comparable with human occupational exposure levels. Moreover, the effective concentrations in this study are below those for earlier described modes of action. Because inhibition of VGCCs appears to be a common and potentially additive mode of action of several classes of insecticides, this target should be considered in neurotoxicity risk assessment studies.
人类接触到具有不同神经毒性作用模式的不同结构类别的杀虫剂。由于钙稳态对于神经元的正常功能和发育至关重要,我们研究了不同类别杀虫剂(拟除虫菊酯:(α-)氯氰菊酯;有机磷酸酯:毒死蜱;有机氯:硫丹;新烟碱类:吡虫啉)及其混合物对细胞内钙浓度([Ca(2+)]i)的影响。在体外,使用Fura-2负载的PC12细胞和高分辨率单细胞荧光显微镜研究了急性(20分钟)暴露于杀虫剂(混合物)对基础和去极化诱发的[Ca(2+)]i的影响。数据表明,氯氰菊酯、α-氯氰菊酯、硫丹和毒死蜱浓度依赖性地降低去极化诱发的[Ca(2+)]i,其半数抑制浓度(IC50)分别为78nM、239nM、250nM和899nM。此外,急性暴露于毒死蜱或硫丹(10μM)会使基础[Ca(2+)]i适度增加,分别达到68±8nM和53±8nM。10μM的吡虫啉不会干扰基础或去极化诱发的[Ca(2+)]i。暴露于二元混合物后,对去极化诱发的[Ca(2+)]i的影响在预期的效应相加范围内,而三元混合物的影响小于该预期的相加效应范围。这些结果表明,不同类型的杀虫剂在体外通过抑制电压门控钙通道(VGCCs)来抑制PC12细胞中去极化诱发的[Ca(2+)]i,其浓度与人类职业暴露水平相当。此外,本研究中的有效浓度低于先前描述的作用模式的浓度。由于抑制VGCCs似乎是几类杀虫剂的一种常见且可能具有相加性的作用模式,因此在神经毒性风险评估研究中应考虑这一靶点。