Suppr超能文献

饮食诱导的肥胖对肠道干细胞的影响:过度增殖但内在功能受损,且这种受损功能依赖胰岛素/胰岛素样生长因子1。

Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1.

作者信息

Mah Amanda T, Van Landeghem Laurianne, Gavin Hannah E, Magness Scott T, Lund P Kay

机构信息

Departments of Nutrition (A.T.M.), Cell Biology and Physiology (L.V.L., S.T.M., P.K.L.), and Chemistry (H.E.G.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.

出版信息

Endocrinology. 2014 Sep;155(9):3302-14. doi: 10.1210/en.2014-1112. Epub 2014 Jun 10.

Abstract

Nutrient intake regulates intestinal epithelial mass and crypt proliferation. Recent findings in model organisms and rodents indicate nutrient restriction impacts intestinal stem cells (ISC). Little is known about the impact of diet-induced obesity (DIO), a model of excess nutrient intake on ISC. We used a Sox9-EGFP reporter mouse to test the hypothesis that an adaptive response to DIO or associated hyperinsulinemia involves expansion and hyperproliferation of ISC. The Sox9-EGFP reporter mouse allows study and isolation of ISC, progenitors, and differentiated lineages based on different Sox9-EGFP expression levels. Sox9-EGFP mice were fed a high-fat diet for 20 weeks to induce DIO and compared with littermates fed low-fat rodent chow. Histology, fluorescence activated cell sorting, and mRNA analyses measured impact of DIO on jejunal crypt-villus morphometry, numbers, and proliferation of different Sox9-EGFP cell populations and gene expression. An in vitro culture assay directly assessed functional capacity of isolated ISC. DIO mice exhibited significant increases in body weight, plasma glucose, insulin, and insulin-like growth factor 1 (IGF1) levels and intestinal Igf1 mRNA. DIO mice had increased villus height and crypt density but decreased intestinal length and decreased numbers of Paneth and goblet cells. In vivo, DIO resulted in a selective expansion of Sox9-EGFP(Low) ISC and percentage of ISC in S-phase. ISC expansion significantly correlated with plasma insulin levels. In vitro, isolated ISC from DIO mice formed fewer enteroids in standard 3D Matrigel culture compared to controls, indicating impaired ISC function. This decreased enteroid formation in isolated ISC from DIO mice was rescued by exogenous insulin, IGF1, or both. We conclude that DIO induces specific increases in ISC and ISC hyperproliferation in vivo. However, isolated ISC from DIO mice have impaired intrinsic survival and growth in vitro that can be rescued by exogenous insulin or IGF1.

摘要

营养摄入调节肠道上皮质量和隐窝增殖。模式生物和啮齿动物的最新研究结果表明,营养限制会影响肠道干细胞(ISC)。关于饮食诱导的肥胖(DIO)这一营养摄入过量的模型对ISC的影响,人们了解甚少。我们使用了一种Sox9-EGFP报告基因小鼠来检验以下假设:对DIO或相关高胰岛素血症的适应性反应涉及ISC的扩增和过度增殖。Sox9-EGFP报告基因小鼠能够基于不同的Sox9-EGFP表达水平对ISC、祖细胞和分化谱系进行研究和分离。将Sox9-EGFP小鼠喂食高脂饮食20周以诱导DIO,并与喂食低脂啮齿动物饲料的同窝小鼠进行比较。组织学、荧光激活细胞分选和mRNA分析测量了DIO对空肠隐窝-绒毛形态、不同Sox9-EGFP细胞群体的数量和增殖以及基因表达的影响。体外培养试验直接评估了分离的ISC的功能能力。DIO小鼠的体重、血浆葡萄糖、胰岛素和胰岛素样生长因子1(IGF1)水平以及肠道Igf1 mRNA显著增加。DIO小鼠的绒毛高度和隐窝密度增加,但肠道长度缩短,潘氏细胞和杯状细胞数量减少。在体内,DIO导致Sox9-EGFP(低)ISC选择性扩增以及处于S期的ISC百分比增加。ISC扩增与血浆胰岛素水平显著相关。在体外,与对照组相比,从DIO小鼠分离的ISC在标准3D基质胶培养中形成的肠样结构更少,表明ISC功能受损。外源性胰岛素、IGF1或两者可挽救DIO小鼠分离的ISC中这种减少的肠样结构形成。我们得出结论,DIO在体内诱导ISC特异性增加和ISC过度增殖。然而,从DIO小鼠分离的ISC在体外具有受损的内在存活和生长能力,外源性胰岛素或IGF1可挽救这种能力。

相似文献

2
IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations.
FASEB J. 2015 Jul;29(7):2828-42. doi: 10.1096/fj.14-264010. Epub 2015 Apr 2.
4
Deletion of intestinal epithelial insulin receptor attenuates high-fat diet-induced elevations in cholesterol and stem, enteroendocrine, and Paneth cell mRNAs.
Am J Physiol Gastrointest Liver Physiol. 2015 Jan 15;308(2):G100-11. doi: 10.1152/ajpgi.00287.2014. Epub 2014 Nov 13.
5
Activation of two distinct Sox9-EGFP-expressing intestinal stem cell populations during crypt regeneration after irradiation.
Am J Physiol Gastrointest Liver Physiol. 2012 May 15;302(10):G1111-32. doi: 10.1152/ajpgi.00519.2011. Epub 2012 Feb 23.
6
Obesity, independent of diet, drives lasting effects on intestinal epithelial stem cell proliferation in mice.
Exp Biol Med (Maywood). 2018 Jun;243(10):826-835. doi: 10.1177/1535370218777762.
9
Analysis of Aged Dysfunctional Intestinal Stem Cells.
Methods Mol Biol. 2020;2171:41-52. doi: 10.1007/978-1-0716-0747-3_3.
10
Glucagon-Like Peptide-2 Stimulates S-Phase Entry of Intestinal Lgr5+ Stem Cells.
Cell Mol Gastroenterol Hepatol. 2022;13(6):1829-1842. doi: 10.1016/j.jcmgh.2022.02.011. Epub 2022 Feb 23.

引用本文的文献

1
Effect of Fermented Feed on Growth Performance and Gut Health of Broilers: A Review.
Animals (Basel). 2025 Jul 3;15(13):1957. doi: 10.3390/ani15131957.
2
Gut microbiota is involved in the exacerbation of adrenal glucocorticoid steroidogenesis in diabetic animals by activation of the TLR4 pathway.
Front Endocrinol (Lausanne). 2025 May 27;16:1555203. doi: 10.3389/fendo.2025.1555203. eCollection 2025.
4
Obese Adipose Tissue Extracellular Vesicles Activate Mitochondrial Fatty Acid β-oxidation to Drive Colonic Stemness.
Cell Mol Gastroenterol Hepatol. 2025;19(7):101504. doi: 10.1016/j.jcmgh.2025.101504. Epub 2025 Mar 22.
6
How important are fatty acids in human health and can they be used in treating diseases?
Gut Microbes. 2024 Jan-Dec;16(1):2420765. doi: 10.1080/19490976.2024.2420765. Epub 2024 Oct 27.
7
Dietary and metabolic effects on intestinal stem cells in health and disease.
Nat Rev Gastroenterol Hepatol. 2025 Jan;22(1):23-38. doi: 10.1038/s41575-024-00980-7. Epub 2024 Oct 2.
9
Therapeutic effects of intermittent fasting on high-fat, high-fructose diet; involvement of jejunal aquaporin 1, 3, and 7.
Heliyon. 2024 Mar 20;10(7):e28436. doi: 10.1016/j.heliyon.2024.e28436. eCollection 2024 Apr 15.
10
Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution.
Genomics. 2024 Mar;116(2):110805. doi: 10.1016/j.ygeno.2024.110805. Epub 2024 Feb 1.

本文引用的文献

1
Wnt-independent role of β-catenin in thyroid cell proliferation and differentiation.
Mol Endocrinol. 2014 May;28(5):681-95. doi: 10.1210/me.2013-1377. Epub 2014 Mar 19.
2
Impact of high-fat feeding on basic helix-loop-helix transcription factors controlling enteroendocrine cell differentiation.
Int J Obes (Lond). 2014 Nov;38(11):1440-8. doi: 10.1038/ijo.2014.20. Epub 2014 Jan 31.
4
Hypothalamic WNT signalling is impaired during obesity and reinstated by leptin treatment in male mice.
Endocrinology. 2013 Dec;154(12):4737-45. doi: 10.1210/en.2013-1746. Epub 2013 Oct 8.
5
Overnutrition stimulates intestinal epithelium proliferation through β-catenin signaling in obese mice.
Diabetes. 2013 Nov;62(11):3736-46. doi: 10.2337/db13-0035. Epub 2013 Jul 24.
7
Insulin-like growth factor-I stimulates differentiation of ATII cells to ATI-like cells through activation of Wnt5a.
Am J Physiol Lung Cell Mol Physiol. 2013 Aug 1;305(3):L222-8. doi: 10.1152/ajplung.00014.2013. Epub 2013 May 24.
8
Intestinal label-retaining cells are secretory precursors expressing Lgr5.
Nature. 2013 Mar 7;495(7439):65-9. doi: 10.1038/nature11965. Epub 2013 Feb 27.
9
Glucagon-like peptide-2 and mouse intestinal adaptation to a high-fat diet.
J Endocrinol. 2013 Mar 15;217(1):11-20. doi: 10.1530/JOE-12-0500. Print 2013 Apr.
10
mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake.
Nature. 2012 Jun 28;486(7404):490-5. doi: 10.1038/nature11163.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验