Berezin Sofya Kostina
, Montreal, QC, H3H 1T2, Canada,
J Membr Biol. 2014 Aug;247(8):651-65. doi: 10.1007/s00232-014-9683-7. Epub 2014 Jun 11.
We describe application of theory and kinetic modeling to study transport of basic anions by the small synthetic molecules. The findings should equip researchers in the particular field with a tool necessary to address an essential question: whether a given anion transporter facilitates permeation of F(-), CH3COO(-), N3(-), and SCN(-) across biological membrane or it does not. The basic anions undergo hydrolysis and conjugate acids (HAnion) are permeant species. However, because methods to quantitatively account for HAnion transport do not exist, traditionally, the phenomenon is also treated as non-existing. When the relative activities and selectivity of the synthetic anionophores are evaluated, basic and non-basic anions are regarded in the same exact way. Here, we show that HAnion and H(+)/OH(-) transport proceed on the same time scale as the anion exchange, nevertheless, comprehensive kinetic study could provide solution to the problems at hands, such as selective transport of HCO3(-) or F(-) anions. We also use theory and modeling to study other questions of particular concern: transport of OH(-) and H(+) ions, facilitated by the small synthetic anionophore, origin of modified anti-Hofmeister selectivity, multi-ion hopping, and anomalous mole-fraction effect in the synthetic ion channels. We do not need to model kinetics in a synthetic channel with multiple ion binding sites. Instead, we "test" the most simple anionophore, a lipophilic electroneutral carrier with Hofmeister-like selectivity, in the classical assays as "presumably, Cl(-)/OH(-) antiporter." The implications of findings to the particular field and beyond are discussed.
我们描述了理论和动力学模型在研究小分子合成物对碱性阴离子转运中的应用。这些发现应为该特定领域的研究人员提供一种工具,以解决一个关键问题:给定的阴离子转运体是否促进F(-)、CH3COO(-)、N3(-)和SCN(-)穿过生物膜,还是不能促进。碱性阴离子会发生水解,共轭酸(HAnion)是可渗透的物种。然而,由于不存在定量解释HAnion转运的方法,传统上,这种现象也被视为不存在。在评估合成阴离子载体的相对活性和选择性时,碱性和非碱性阴离子的处理方式完全相同。在这里,我们表明HAnion和H(+)/OH(-)的转运与阴离子交换在同一时间尺度上进行,尽管如此,全面的动力学研究可以解决手头的问题,例如HCO3(-)或F(-)阴离子的选择性转运。我们还使用理论和模型来研究其他特别关注的问题:由小分子合成阴离子载体促进的OH(-)和H(+)离子的转运、修饰的抗霍夫迈斯特选择性的起源、多离子跳跃以及合成离子通道中的异常摩尔分数效应。我们不需要对具有多个离子结合位点的合成通道中的动力学进行建模。相反,我们在经典实验中“测试”最简单的阴离子载体,一种具有霍夫迈斯特样选择性的亲脂性电中性载体,作为“推测的Cl(-)/OH(-)反向转运体”。讨论了这些发现对该特定领域及其他领域的影响。