Suppr超能文献

植物细胞骨架的定量分析揭示了潜在的组织原则。

Quantitative analyses of the plant cytoskeleton reveal underlying organizational principles.

机构信息

Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany.

Plant Cell Walls, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany.

出版信息

J R Soc Interface. 2014 Aug 6;11(97):20140362. doi: 10.1098/rsif.2014.0362.

Abstract

The actin and microtubule (MT) cytoskeletons are vital structures for cell growth and development across all species. While individual molecular mechanisms underpinning actin and MT dynamics have been intensively studied, principles that govern the cytoskeleton organization remain largely unexplored. Here, we captured biologically relevant characteristics of the plant cytoskeleton through a network-driven imaging-based approach allowing us to quantitatively assess dynamic features of the cytoskeleton. By introducing suitable null models, we demonstrate that the plant cytoskeletal networks exhibit properties required for efficient transport, namely, short average path lengths and high robustness. We further show that these advantageous features are maintained during temporal cytoskeletal rearrangements. Interestingly, man-made transportation networks exhibit similar properties, suggesting general laws of network organization supporting diverse transport processes. The proposed network-driven analysis can be readily used to identify organizational principles of cytoskeletons in other organisms.

摘要

肌动蛋白和微管(MT)细胞骨架是所有物种细胞生长和发育的重要结构。虽然支撑肌动蛋白和 MT 动力学的单个分子机制已经得到了深入研究,但控制细胞骨架组织的原则在很大程度上仍未得到探索。在这里,我们通过网络驱动的基于成像的方法捕获了与生物学相关的植物细胞骨架特征,使我们能够定量评估细胞骨架的动态特征。通过引入合适的零模型,我们证明植物细胞骨架网络表现出有效运输所需的特性,即短的平均路径长度和高稳健性。我们进一步表明,这些有利的特征在细胞骨架的时间性重排期间得以维持。有趣的是,人造运输网络表现出相似的特性,这表明支持各种运输过程的网络组织的一般规律。所提出的网络驱动分析可以很容易地用于识别其他生物体中细胞骨架的组织原则。

相似文献

1
Quantitative analyses of the plant cytoskeleton reveal underlying organizational principles.
J R Soc Interface. 2014 Aug 6;11(97):20140362. doi: 10.1098/rsif.2014.0362.
3
Design Principles of Length Control of Cytoskeletal Structures.
Annu Rev Biophys. 2016 Jul 5;45:85-116. doi: 10.1146/annurev-biophys-070915-094206. Epub 2016 Apr 29.
4
Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis.
Plant Cell. 2011 Jun;23(6):2302-13. doi: 10.1105/tpc.111.087940. Epub 2011 Jun 21.
5
System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5741-E5749. doi: 10.1073/pnas.1706711114. Epub 2017 Jun 27.
7
Tau co-organizes dynamic microtubule and actin networks.
Sci Rep. 2015 May 5;5:9964. doi: 10.1038/srep09964.
8
Cytoskeletal organization in isolated plant cells under geometry control.
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17399-17408. doi: 10.1073/pnas.2003184117. Epub 2020 Jul 8.
9
Cytoskeleton dynamics control the first asymmetric cell division in Arabidopsis zygote.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14157-14162. doi: 10.1073/pnas.1613979113. Epub 2016 Nov 22.
10
Root cytoskeleton: its role in perception of and response to gravity.
Planta. 1997;203(Suppl):S69-78. doi: 10.1007/pl00008117.

引用本文的文献

1
Auxin-induced actin cytoskeleton rearrangements require AUX1.
New Phytol. 2020 Apr;226(2):441-459. doi: 10.1111/nph.16382. Epub 2020 Feb 11.
2
System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5741-E5749. doi: 10.1073/pnas.1706711114. Epub 2017 Jun 27.

本文引用的文献

1
A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing.
Science. 2013 Dec 6;342(6163):1245533. doi: 10.1126/science.1245533. Epub 2013 Nov 7.
2
Emergence of hierarchy in cost-driven growth of spatial networks.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):8824-9. doi: 10.1073/pnas.1222441110. Epub 2013 May 14.
3
MicroFilament Analyzer identifies actin network organizations in epidermal cells of Arabidopsis thaliana roots.
Plant Signal Behav. 2013 Jul;8(7):e24821. doi: 10.4161/psb.24821. Epub 2013 Jul 1.
5
Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport.
Phys Rev Lett. 2013 Mar 1;110(9):098102. doi: 10.1103/PhysRevLett.110.098102. Epub 2013 Feb 28.
6
Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3375-80. doi: 10.1073/pnas.1219206110. Epub 2013 Feb 11.
7
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.
8
The influence of light on microtubule dynamics and alignment in the Arabidopsis hypocotyl.
Plant Cell. 2012 Jan;24(1):192-201. doi: 10.1105/tpc.111.093849. Epub 2012 Jan 31.
9
Golgi body motility in the plant cell cortex correlates with actin cytoskeleton organization.
Plant Cell Physiol. 2011 Oct;52(10):1844-55. doi: 10.1093/pcp/pcr122. Epub 2011 Sep 4.
10
Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis.
Plant Cell. 2011 Jun;23(6):2302-13. doi: 10.1105/tpc.111.087940. Epub 2011 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验