Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany.
Plant Cell Walls, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany.
J R Soc Interface. 2014 Aug 6;11(97):20140362. doi: 10.1098/rsif.2014.0362.
The actin and microtubule (MT) cytoskeletons are vital structures for cell growth and development across all species. While individual molecular mechanisms underpinning actin and MT dynamics have been intensively studied, principles that govern the cytoskeleton organization remain largely unexplored. Here, we captured biologically relevant characteristics of the plant cytoskeleton through a network-driven imaging-based approach allowing us to quantitatively assess dynamic features of the cytoskeleton. By introducing suitable null models, we demonstrate that the plant cytoskeletal networks exhibit properties required for efficient transport, namely, short average path lengths and high robustness. We further show that these advantageous features are maintained during temporal cytoskeletal rearrangements. Interestingly, man-made transportation networks exhibit similar properties, suggesting general laws of network organization supporting diverse transport processes. The proposed network-driven analysis can be readily used to identify organizational principles of cytoskeletons in other organisms.
肌动蛋白和微管(MT)细胞骨架是所有物种细胞生长和发育的重要结构。虽然支撑肌动蛋白和 MT 动力学的单个分子机制已经得到了深入研究,但控制细胞骨架组织的原则在很大程度上仍未得到探索。在这里,我们通过网络驱动的基于成像的方法捕获了与生物学相关的植物细胞骨架特征,使我们能够定量评估细胞骨架的动态特征。通过引入合适的零模型,我们证明植物细胞骨架网络表现出有效运输所需的特性,即短的平均路径长度和高稳健性。我们进一步表明,这些有利的特征在细胞骨架的时间性重排期间得以维持。有趣的是,人造运输网络表现出相似的特性,这表明支持各种运输过程的网络组织的一般规律。所提出的网络驱动分析可以很容易地用于识别其他生物体中细胞骨架的组织原则。