Jose Josmin P, Thomas Sabu
School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India.
Phys Chem Chem Phys. 2014 Jul 28;16(28):14730-40. doi: 10.1039/c4cp01532k.
Herein, investigation on XLPE-Al2O3-clay ternary hybrid systems of Al2O3 and clay in 1 : 1 and 2 : 1 ratios, binary systems of XLPE-clay and XLPE-Al2O3 nanocomposites, with special reference to the hybrid filler effect and the superior microstructural development in ternary systems is conducted. The ternary hybrid composite of Al2O3 and clay in a 1 : 1 ratio exhibits the highest tensile strength (100% increase) and Young's modulus (208% increase), followed by the Al2O3 : clay = 2 : 1 system. The interaction between alumina and clay altered the composite morphology, filler dispersion and gave rise to a unique filler architecture leading to a substantial boost up in mechanics compared to predictions based on the idealized filler morphology. Experimentally observed much higher mechanics compared to theoretical predictions confirmed that the dramatic improvement in mechanics is the outcome of the positive hybrid effect and a second factor of synergism, i.e. filler-filler networks. Morphological control of the hybrid filler network is realized by adjusting the ratio between different fillers. For the Al2O3 : clay = 2 : 1 system, the microstructural limitation of dispersion due to the steric effect of alumina clusters shifts the properties to the negative hybrid effect region.
在此,对Al₂O₃与黏土比例为1:1和2:1的XLPE-Al₂O₃-黏土三元杂化体系、XLPE-黏土二元体系以及XLPE-Al₂O₃纳米复合材料进行了研究,特别关注了杂化填料效应以及三元体系中优异的微观结构发展。Al₂O₃与黏土比例为1:1的三元杂化复合材料表现出最高的拉伸强度(提高100%)和杨氏模量(提高208%),其次是Al₂O₃:黏土 = 2:1体系。氧化铝与黏土之间的相互作用改变了复合材料的形态、填料分散情况,并产生了独特的填料结构,与基于理想化填料形态的预测相比,显著提高了力学性能。实验观察到的力学性能远高于理论预测,这证实了力学性能的显著提高是正杂化效应和协同作用的第二个因素即填料-填料网络的结果。通过调整不同填料之间的比例来实现杂化填料网络的形态控制。对于Al₂O₃:黏土 = 2:1体系,由于氧化铝团簇的空间位阻效应导致的分散微观结构限制使性能转移到负杂化效应区域。