Suppr超能文献

不稳定动力学稳定中的策略切换。

Strategy switching in the stabilization of unstable dynamics.

作者信息

Zenzeri Jacopo, De Santis Dalia, Morasso Pietro

机构信息

Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia, Genoa, Italy.

出版信息

PLoS One. 2014 Jun 12;9(6):e99087. doi: 10.1371/journal.pone.0099087. eCollection 2014.

Abstract

In order to understand mechanisms of strategy switching in the stabilization of unstable dynamics, this work investigates how human subjects learn to become skilled users of an underactuated bimanual tool in an unstable environment. The tool, which consists of a mass and two hand-held non-linear springs, is affected by a saddle-like force-field. The non-linearity of the springs allows the users to determine size and orientation of the tool stiffness ellipse, by using different patterns of bimanual coordination: minimal stiffness occurs when the two spring terminals are aligned and stiffness size grows by stretching them apart. Tool parameters were set such that minimal stiffness is insufficient to provide stable equilibrium whereas asymptotic stability can be achieved with sufficient stretching, although at the expense of greater effort. As a consequence, tool users have two possible strategies for stabilizing the mass in different regions of the workspace: 1) high stiffness feedforward strategy, aiming at asymptotic stability and 2) low stiffness positional feedback strategy aiming at bounded stability. The tool was simulated by a bimanual haptic robot with direct torque control of the motors. In a previous study we analyzed the behavior of naïve users and we found that they spontaneously clustered into two groups of approximately equal size. In this study we trained subjects to become expert users of both strategies in a discrete reaching task. Then we tested generalization capabilities and mechanism of strategy-switching by means of stabilization tasks which consist of tracking moving targets in the workspace. The uniqueness of the experimental setup is that it addresses the general problem of strategy-switching in an unstable environment, suggesting that complex behaviors cannot be explained in terms of a global optimization criterion but rather require the ability to switch between different sub-optimal mechanisms.

摘要

为了理解在不稳定动力学稳定过程中策略切换的机制,本研究探讨了人类受试者如何在不稳定环境中学习成为欠驱动双手工具的熟练使用者。该工具由一个质量块和两个手持式非线性弹簧组成,受到鞍形力场的影响。弹簧的非线性使使用者能够通过使用不同的双手协调模式来确定工具刚度椭圆的大小和方向:当两个弹簧末端对齐时刚度最小,将它们拉开则刚度增大。设置工具参数使得最小刚度不足以提供稳定平衡,而通过充分拉伸可以实现渐近稳定,尽管这需要付出更大的努力。因此,工具使用者在工作空间的不同区域有两种稳定质量块的可能策略:1)高刚度前馈策略,旨在实现渐近稳定;2)低刚度位置反馈策略,旨在实现有界稳定。该工具由一个具有电机直接扭矩控制的双手触觉机器人进行模拟。在之前的一项研究中,我们分析了新手使用者的行为,发现他们自然地聚集成两组,大小大致相等。在本研究中,我们训练受试者在离散伸手任务中成为两种策略的专家使用者。然后,我们通过在工作空间中跟踪移动目标的稳定任务来测试泛化能力和策略切换机制。实验设置的独特之处在于它解决了不稳定环境中策略切换的一般问题,表明复杂行为不能用全局优化标准来解释,而是需要在不同的次优机制之间进行切换的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d60/4055681/1dc2633e3dd8/pone.0099087.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验