Suppr超能文献

通过时空物体分解与关联实现超分辨率显微镜图像重建:在解析骨骼肌横小管结构中的应用

Superresolution microscope image reconstruction by spatiotemporal object decomposition and association: application in resolving t-tubule structure in skeletal muscle.

作者信息

Sun Mingzhai, Huang Jiaqing, Bunyak Filiz, Gumpper Kristyn, De Gejing, Sermersheim Matthew, Liu George, Lin Pei-Hui, Palaniappan Kannappan, Ma Jianjie

出版信息

Opt Express. 2014 May 19;22(10):12160-76. doi: 10.1364/OE.22.012160.

Abstract

One key factor that limits resolution of single-molecule superresolution microscopy relates to the localization accuracy of the activated emitters, which is usually deteriorated by two factors. One originates from the background noise due to out-of-focus signals, sample auto-fluorescence, and camera acquisition noise; and the other is due to the low photon count of emitters at a single frame. With fast acquisition rate, the activated emitters can last multiple frames before they transiently switch off or permanently bleach. Effectively incorporating the temporal information of these emitters is critical to improve the spatial resolution. However, majority of the existing reconstruction algorithms locate the emitters frame by frame, discarding or underusing the temporal information. Here we present a new image reconstruction algorithm based on tracklets, short trajectories of the same objects. We improve the localization accuracy by associating the same emitters from multiple frames to form tracklets and by aggregating signals to enhance the signal to noise ratio. We also introduce a weighted mean-shift algorithm (WMS) to automatically detect the number of modes (emitters) in overlapping regions of tracklets so that not only well-separated single emitters but also individual emitters within multi-emitter groups can be identified and tracked. In combination with a maximum likelihood estimator method (MLE), we are able to resolve low to medium density of overlapping emitters with improved localization accuracy. We evaluate the performance of our method with both synthetic and experimental data, and show that the tracklet-based reconstruction is superior in localization accuracy, particularly for weak signals embedded in a strong background. Using this method, for the first time, we resolve the transverse tubule structure of the mammalian skeletal muscle.

摘要

限制单分子超分辨率显微镜分辨率的一个关键因素与激活发射体的定位精度有关,而定位精度通常会因两个因素而降低。一个因素源于离焦信号、样品自发荧光和相机采集噪声引起的背景噪声;另一个因素是单帧发射体的光子计数较低。在快速采集速率下,激活发射体在短暂关闭或永久漂白之前可以持续多帧。有效整合这些发射体的时间信息对于提高空间分辨率至关重要。然而,现有的大多数重建算法都是逐帧定位发射体,丢弃或未充分利用时间信息。在此,我们提出一种基于轨迹片段(同一物体的短轨迹)的新图像重建算法。我们通过将多帧中的相同发射体关联起来形成轨迹片段,并通过聚合信号来提高信噪比,从而提高定位精度。我们还引入了加权均值漂移算法(WMS)来自动检测轨迹片段重叠区域中的模式(发射体)数量,以便不仅能够识别和跟踪分离良好的单个发射体,还能识别和跟踪多发射体组内的单个发射体。结合最大似然估计器方法(MLE),我们能够以更高的定位精度解析低密度到中等密度重叠发射体。我们用合成数据和实验数据评估了我们方法的性能,结果表明基于轨迹片段的重建在定位精度方面更具优势,特别是对于嵌入强背景中的弱信号。使用这种方法,我们首次解析了哺乳动物骨骼肌的横小管结构。

相似文献

2
3D multifocus astigmatism and compressed sensing (3D MACS) based superresolution reconstruction.
Biomed Opt Express. 2015 Feb 23;6(3):902-17. doi: 10.1364/BOE.6.000902. eCollection 2015 Mar 1.
4
Localization precision of stochastic optical localization nanoscopy using single frames.
J Biomed Opt. 2013 Nov;18(11):111418. doi: 10.1117/1.JBO.18.11.111418.
5
Unified resolution bounds for conventional and stochastic localization fluorescence microscopy.
Phys Rev Lett. 2012 Oct 19;109(16):168102. doi: 10.1103/PhysRevLett.109.168102. Epub 2012 Oct 17.
6
Simultaneous multiple-emitter fitting for single molecule super-resolution imaging.
Biomed Opt Express. 2011 Apr 29;2(5):1377-93. doi: 10.1364/BOE.2.001377.
7
BNP-Track: a framework for superresolved tracking.
Nat Methods. 2024 Sep;21(9):1716-1724. doi: 10.1038/s41592-024-02349-9. Epub 2024 Jul 22.

引用本文的文献

1
Triggered cagedSTORM microscopy.
Biomed Opt Express. 2024 May 15;15(6):3715-3726. doi: 10.1364/BOE.517480. eCollection 2024 Jun 1.
3
Excitation-contraction coupling in mammalian skeletal muscle: Blending old and last-decade research.
Front Physiol. 2022 Sep 2;13:989796. doi: 10.3389/fphys.2022.989796. eCollection 2022.
4
Time-dependent in situ structural and cellular aberrations in rabbit cornea in vivo after mustard gas exposure.
Exp Eye Res. 2022 Nov;224:109247. doi: 10.1016/j.exer.2022.109247. Epub 2022 Sep 13.
5
Decorin regulates collagen fibrillogenesis during corneal wound healing in mouse in vivo.
Exp Eye Res. 2022 Mar;216:108933. doi: 10.1016/j.exer.2022.108933. Epub 2022 Jan 11.
8
Development of semi-automatic procedure for detection and tracking of fiducial markers for orofacial kinematics during natural feeding.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:580-583. doi: 10.1109/EMBC.2017.8036891.
9
Revealing T-Tubules in Striated Muscle with New Optical Super-Resolution Microscopy Techniquess.
Eur J Transl Myol. 2014 Dec 24;25(1):4747. doi: 10.4081/ejtm.2015.4747. eCollection 2015 Jan 7.
10
Development of a novel in vivo corneal fibrosis model in the dog.
Exp Eye Res. 2016 Feb;143:75-88. doi: 10.1016/j.exer.2015.09.010. Epub 2015 Oct 9.

本文引用的文献

1
Fast compressed sensing analysis for super-resolution imaging using L1-homotopy.
Opt Express. 2013 Nov 18;21(23):28583-96. doi: 10.1364/OE.21.028583.
2
Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ.
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):E2812-20. doi: 10.1073/pnas.1310654110. Epub 2013 Jul 2.
3
Efficient multiple object tracking using mutually repulsive active membranes.
PLoS One. 2013 Jun 14;8(6):e65769. doi: 10.1371/journal.pone.0065769. Print 2013.
4
Stochastic optical reconstruction microscopy (STORM): a method for superresolution fluorescence imaging.
Cold Spring Harb Protoc. 2013 Jun 1;2013(6):498-520. doi: 10.1101/pdb.top075143.
5
ImageJ plug-in for Bayesian analysis of blinking and bleaching.
Nat Methods. 2013 Feb;10(2):97-8. doi: 10.1038/nmeth.2342.
6
Accelerating 3B single-molecule super-resolution microscopy with cloud computing.
Nat Methods. 2013 Feb;10(2):96-7. doi: 10.1038/nmeth.2335.
7
Localizer: fast, accurate, open-source, and modular software package for superresolution microscopy.
J Biomed Opt. 2012 Dec;17(12):126008. doi: 10.1117/1.JBO.17.12.126008.
8
Ultrabright photoactivatable fluorophores created by reductive caging.
Nat Methods. 2012 Dec;9(12):1181-4. doi: 10.1038/nmeth.2214. Epub 2012 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验