Suppr超能文献

使用全变差正则化的双能CT的联合迭代重建与图像域分解

Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.

作者信息

Dong Xue, Niu Tianye, Zhu Lei

机构信息

Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332.

出版信息

Med Phys. 2014 May;41(5):051909. doi: 10.1118/1.4870375.

Abstract

PURPOSE

Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical properties of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution.

METHODS

The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization.

RESULTS

On the Catphan©600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order of magnitude. This improvement is mainly attributed to the high noise correlation in the CT images reconstructed by the proposed algorithm. Iterative reconstruction using different regularization, including quadratic orq-generalized Gaussian Markov random field regularization, achieves similar noise suppression from high noise correlation. However, the proposed TV regularization obtains a better edge preserving performance. Studies of electron density measurement also show that our method reduces the average estimation error from 9.5% to 7.1%. On the anthropomorphic head phantom, the proposed method suppresses the noise standard deviation of the decomposed images by a factor of ∼14 without blurring the fine structures in the sinus area.

CONCLUSIONS

The authors propose a practical method for DECT imaging reconstruction, which combines the image reconstruction and material decomposition into one optimization framework. Compared to the existing approaches, our method achieves a superior performance on DECT imaging with respect to decomposition accuracy, noise reduction, and spatial resolution.

摘要

目的

双能CT(DECT)因其物质分解和能量选择性成像能力而被越来越多地使用。然而,DECT的一个普遍问题是,分解过程不稳定,因为由于信号抵消,分解信号的相对幅度会降低,而图像噪声则从两次独立扫描的CT图像中累积。因此,直接图像分解会导致所得图像的信噪比严重下降。现有的噪声抑制技术通常在DECT中通过独立执行重建和分解程序来实现,这些程序在重建过程中没有探索分解图像的统计特性以进行降噪。在这项工作中,作者提出了一种迭代方法,该方法将重建和信号分解程序相结合,以在不显著损失分辨率的情况下最小化DECT图像噪声。

方法

所提出的算法被公式化为一个优化问题,该问题在一个框架中平衡数据保真度和分解图像的总变差,并且分解步骤与重建一起迭代进行。尽管原始投影的噪声在两次CT扫描中是独立的,但所提出算法生成的CT图像中的噪声变得高度相关。由于这一特性,所提出的算法避免了分解过程中的噪声累积。作者使用体模研究评估了该方法在噪声抑制和空间分辨率方面的性能,并将该算法与传统去噪方法以及具有不同正则化形式的联合迭代重建方法进行了比较。

结果

在Catphan©600体模上,在所提出的方法在相同噪声抑制水平下(即噪声标准差降低一个数量级)在保留空间分辨率方面优于现有的去噪方法。这种改进主要归因于所提出算法重建的CT图像中的高噪声相关性。使用不同正则化(包括二次或q广义高斯马尔可夫随机场正则化)的迭代重建从高噪声相关性中实现了类似的噪声抑制。然而,所提出的总变差正则化获得了更好的边缘保留性能。电子密度测量研究还表明,我们的方法将平均估计误差从9.5%降低到了7.1%。在仿真人体头部体模上,所提出的方法将分解图像的噪声标准差抑制了约14倍,同时没有模糊鼻窦区域的精细结构。

结论

作者提出了一种用于DECT成像重建的实用方法,该方法将图像重建和物质分解结合到一个优化框架中。与现有方法相比,我们方法在DECT成像的分解精度、降噪和空间分辨率方面具有卓越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验