Suppr超能文献

螺旋P1稳定性对腺嘌呤核糖开关适体结构域的结构预组织和配体结合亲和力的重要性。

The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain.

作者信息

Nozinovic Senada, Reining Anke, Kim Yong-Boum, Noeske Jonas, Schlepckow Kai, Wöhnert Jens, Schwalbe Harald

机构信息

Johann Wolfgang Goethe-University Frankfurt; Center for Biomolecular Magnetic Resonance (BMRZ); Max-von-Laue-Strasse 7; Frankfurt, Germany; Institute of Organic Chemistry and Chemical Biology.

Department of Molecular and Cell Biology; University of California at Berkeley; Berkeley, CA USA.

出版信息

RNA Biol. 2014;11(5):655-6. doi: 10.4161/rna.29439. Epub 2014 Jun 12.

Abstract

We report here an in-depth characterization of the aptamer domain of the transcriptional adenine-sensing riboswitch (pbuE) by NMR and fluorescence spectroscopy. By NMR studies, the structure of two aptamer sequences with different lengths of the helix P1, the central element involved in riboswitch conformational switching, was characterized. Hydrogen-bond interactions could be mapped at nucleotide resolution providing information about secondary and tertiary structure, structure homogeneity and dynamics. Our study reveals that the elongation of helix P1 has pronounced effects not only on the local but on the global structure of the apo aptamer domain. The structural differences induced by stabilizing helix P1 were found to be linked to changes of the ligand binding affinity as revealed from analysis of kinetic and thermodynamic data obtained from stopped-flow fluorescence studies. The results provide new insight into the sequence-dependent fine tuning of the structure and function of purine-sensing riboswitches.

摘要

我们在此报告通过核磁共振(NMR)和荧光光谱法对转录腺嘌呤感应核糖开关(pbuE)的适体结构域进行的深入表征。通过NMR研究,对具有不同长度螺旋P1(参与核糖开关构象转换的核心元件)的两个适体序列的结构进行了表征。氢键相互作用可以在核苷酸分辨率下进行映射,从而提供有关二级和三级结构、结构均匀性和动力学的信息。我们的研究表明,螺旋P1的延长不仅对脱辅基适体结构域的局部结构,而且对整体结构都有显著影响。从停流荧光研究获得的动力学和热力学数据分析表明,稳定螺旋P1所诱导的结构差异与配体结合亲和力的变化有关。这些结果为嘌呤感应核糖开关的结构和功能的序列依赖性微调提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3071/4152369/6ed83e4f1bd6/rna-11-655-g1.jpg

相似文献

3
Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
Nucleic Acids Res. 2007;35(15):5262-73. doi: 10.1093/nar/gkm565. Epub 2007 Aug 7.
4
Pseudoknot preorganization of the preQ1 class I riboswitch.
J Am Chem Soc. 2012 Jul 25;134(29):11928-31. doi: 10.1021/ja3049964. Epub 2012 Jul 9.
5
Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
J Mol Biol. 2006 Jun 9;359(3):754-68. doi: 10.1016/j.jmb.2006.04.003. Epub 2006 Apr 21.
7
Riboswitch structure: an internal residue mimicking the purine ligand.
Nucleic Acids Res. 2010 Apr;38(6):2057-68. doi: 10.1093/nar/gkp1080. Epub 2009 Dec 18.
8
Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch.
RNA. 2013 Nov;19(11):1517-24. doi: 10.1261/rna.040493.113. Epub 2013 Sep 19.

引用本文的文献

3
Magnesium ions mitigate metastable states in the regulatory landscape of mRNA elements.
RNA. 2024 Jul 16;30(8):992-1010. doi: 10.1261/rna.079767.123.
4
Structural insights into translation regulation by the THF-II riboswitch.
Nucleic Acids Res. 2023 Jan 25;51(2):952-965. doi: 10.1093/nar/gkac1257.
6
A transient conformation facilitates ligand binding to the adenine riboswitch.
iScience. 2021 Nov 25;24(12):103512. doi: 10.1016/j.isci.2021.103512. eCollection 2021 Dec 17.
7
A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition.
Nucleic Acids Res. 2021 Jun 4;49(10):5891-5904. doi: 10.1093/nar/gkab307.
8
Tying the knot in the tetrahydrofolate (THF) riboswitch: A molecular basis for gene regulation.
J Struct Biol. 2021 Mar;213(1):107703. doi: 10.1016/j.jsb.2021.107703. Epub 2021 Feb 9.
10
Biochemical Characterization of Yeast Xrn1.
Biochemistry. 2020 Apr 21;59(15):1493-1507. doi: 10.1021/acs.biochem.9b01035. Epub 2020 Apr 13.

本文引用的文献

1
Three-state mechanism couples ligand and temperature sensing in riboswitches.
Nature. 2013 Jul 18;499(7458):355-9. doi: 10.1038/nature12378. Epub 2013 Jul 10.
2
Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy.
Nucleic Acids Res. 2011 Aug;39(15):6802-12. doi: 10.1093/nar/gkr238. Epub 2011 May 16.
3
Riboswitches and the RNA world.
Cold Spring Harb Perspect Biol. 2012 Feb 1;4(2):a003566. doi: 10.1101/cshperspect.a003566.
4
Riboswitches: structures and mechanisms.
Cold Spring Harb Perspect Biol. 2011 Jun 1;3(6):a003533. doi: 10.1101/cshperspect.a003533.
5
Free state conformational sampling of the SAM-I riboswitch aptamer domain.
Structure. 2010 Jul 14;18(7):787-97. doi: 10.1016/j.str.2010.04.006.
6
Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain.
Nucleic Acids Res. 2010 Jul;38(12):4143-53. doi: 10.1093/nar/gkq138. Epub 2010 Mar 3.
10
Molecular dynamics simulation study of the binding of purine bases to the aptamer domain of the guanine sensing riboswitch.
Nucleic Acids Res. 2009 Aug;37(14):4774-86. doi: 10.1093/nar/gkp486. Epub 2009 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验