Suppr超能文献

基于金属棒阵列的太赫兹表面等离子体波导用于纳米薄膜传感。

Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing.

作者信息

You Borwen, Peng Chien-Chun, Jhang Jia-Shing, Chen Hungh-Hsuan, Yu Chin-Ping, Lai Wei-Chih, Liu Tze-An, Peng Jin-Long, Lu Ja-Yu

出版信息

Opt Express. 2014 May 5;22(9):11340-50. doi: 10.1364/OE.22.011340.

Abstract

A high-aspect-ratio metallic rod array is demonstrated to generate and propagate highly confined terahertz (THz) surface plasmonic waves under end-fire excitation. The transverse modal power distribution and spectral properties of the bound THz plasmonic wave are characterized in two metallic rod arrays with different periods and in two configurations with and without attaching a subwavelength superstrate. The integrated metallic rod array-based waveguide can be used to sense the various thin films deposited on the polypropylene superstrate based on the phase-sensitive mechanism. The sensor exhibits different phase detection sensitivities depending on the modal power immersed in the air gaps between the metallic rods. Deep-subwavelength SiO(2) and ZnO nanofilms with an optical path difference of 252 nm, which is equivalent to λ/3968 at 0.300 THz, are used as analytes to test the integrated plasmonic waveguide. Analysis of the refractive index and thickness of molecular membranes indicates that the metallic rod array-based THz waveguide can integrate various biochip platforms for minute molecular detection, which is extremely less than the coherent length of THz waves.

摘要

实验证明,一种高纵横比的金属棒阵列在端射激发下能够产生并传播高度受限的太赫兹(THz)表面等离子体波。在具有不同周期的两种金属棒阵列以及有无附加亚波长覆盖层的两种配置中,对束缚太赫兹等离子体波的横向模态功率分布和光谱特性进行了表征。基于集成金属棒阵列的波导可用于基于相敏机制检测沉积在聚丙烯覆盖层上的各种薄膜。该传感器根据浸入金属棒之间气隙中的模态功率表现出不同的相位检测灵敏度。具有252 nm光程差(相当于0.300 THz时的λ/3968)的深亚波长SiO₂和ZnO纳米薄膜用作分析物来测试集成等离子体波导。对分子膜的折射率和厚度分析表明,基于金属棒阵列的太赫兹波导可集成各种用于微小分子检测的生物芯片平台,该检测能力远远小于太赫兹波的相干长度。

相似文献

1
Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing.
Opt Express. 2014 May 5;22(9):11340-50. doi: 10.1364/OE.22.011340.
2
Subwavelength confined terahertz waves on planar waveguides using metallic gratings.
Opt Express. 2013 Mar 11;21(5):6009-19. doi: 10.1364/OE.21.006009.
3
Hybrid terahertz plasmonic waveguide for sensing applications.
Opt Express. 2013 Sep 9;21(18):21087-96. doi: 10.1364/OE.21.021087.
5
Slot plasmonic waveguide based on doped-GaAs for terahertz deep-subwavelength applications.
J Opt Soc Am A Opt Image Sci Vis. 2015 Nov 1;32(11):2189-94. doi: 10.1364/JOSAA.32.002189.
6
Terahertz artificial material based on integrated metal-rod-array for phase sensitive fluid detection.
Opt Express. 2017 Apr 17;25(8):8571-8583. doi: 10.1364/OE.25.008571.
7
Terahertz surface-wave resonant sensor with a metal hole array.
Opt Lett. 2006 Apr 15;31(8):1118-20. doi: 10.1364/ol.31.001118.
8
Plasmonic ridge waveguides with deep-subwavelength outside-field confinements.
Nanotechnology. 2016 Feb 12;27(6):065501. doi: 10.1088/0957-4484/27/6/065501. Epub 2016 Jan 14.
10
Terahertz wave generation by nanoconfinement of light.
Appl Opt. 2014 Mar 20;53(9):1826-31. doi: 10.1364/AO.53.001826.

引用本文的文献

1
Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors.
Sci Rep. 2017 Aug 4;7(1):7355. doi: 10.1038/s41598-017-07720-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验