Kauppinen Risto A
School of Experimental Psychology and Clinical Research and Imaging Centre, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK.
Prog Nucl Magn Reson Spectrosc. 2014 Jul;80:12-25. doi: 10.1016/j.pnmrs.2014.05.002. Epub 2014 May 23.
Ischaemia is a condition in which blood flow either drops to zero or proceeds at severely decreased levels that cannot supply sufficient oxidizable substrates to maintain energy metabolism in vivo. Brain, a highly oxidative organ, is particularly susceptible to ischaemia. Ischaemia leads to loss of consciousness in seconds and, if prolonged, permanent tissue damage is inevitable. Ischaemia primarily results in a collapse of cerebral energy state, followed by a series of subtle changes in anaerobic metabolism, ion and water homeostasis that eventually initiate destructive internal and external processes in brain tissue. (31)P and (1)H NMR spectroscopy were initially used to evaluate anaerobic metabolism in brain. However, since the early 1990s (1)H Magnetic Resonance Imaging (MRI), exploiting the nuclear magnetism of tissue water, has become the key method for assessment of ischaemic brain tissue. This article summarises multi-parametric (1)H MRI work that has exploited diffusion, relaxation and magnetisation transfer as 'contrasts' to image ischaemic brain in preclinical models for the first few hours, with a view to assessing evolution of ischaemia and tissue viability in a non-invasive manner.
缺血是一种血液流动要么降至零,要么以严重降低的水平进行,以至于无法提供足够的可氧化底物来维持体内能量代谢的状态。大脑作为一个高度氧化的器官,特别容易受到缺血的影响。缺血会在数秒内导致意识丧失,如果持续时间延长,不可避免地会造成永久性组织损伤。缺血主要导致脑能量状态崩溃,随后在无氧代谢、离子和水平衡方面发生一系列细微变化,最终引发脑组织内部和外部的破坏性过程。最初,(31)P和(1)H核磁共振波谱用于评估大脑中的无氧代谢。然而,自20世纪90年代初以来,利用组织水的核磁特性的(1)H磁共振成像(MRI)已成为评估缺血性脑组织的关键方法。本文总结了多参数(1)H MRI的工作,该工作利用扩散、弛豫和磁化传递作为“对比”,在临床前模型中对缺血性脑进行最初几个小时的成像,以期以非侵入性方式评估缺血的演变和组织活力。