Suppr超能文献

丝裂原活化蛋白激酶与线粒体在心脏疾病中的相互作用:治疗前景

Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives.

作者信息

Javadov Sabzali, Jang Sehwan, Agostini Bryan

机构信息

Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA.

Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA.

出版信息

Pharmacol Ther. 2014 Nov;144(2):202-25. doi: 10.1016/j.pharmthera.2014.05.013. Epub 2014 Jun 9.

Abstract

Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and crosstalk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK crosstalk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases.

摘要

在全球范围内,心血管疾病导致的死亡率和发病率高于其他任何疾病。尽管许多细胞内信号通路影响心脏生理和病理,但丝裂原活化蛋白激酶(MAPK)家族因其在信号传导以及与其他信号网络的相互作用中具有广泛影响而备受关注。被广泛研究的MAPK包括ERK1/2、p38、JNK和ERK5,它们展示出独特的细胞内信号传导机制,对多种有丝分裂原和应激源做出反应,并影响心脏发育、代谢、功能和发病机制的信号传导。尽管经过30年对各种动物/细胞模型、应激严重程度和刺激类型的广泛临床研究和基础研究,但MAPK信号传导与心脏功能障碍之间的确切关系仍不明确。不过,一些研究已经证明了MAPK与线粒体相互作用的重要性,线粒体作为细胞的动力源,为正常心肌细胞功能提供超过80%的ATP,并在细胞死亡中起关键作用。尽管许多问题仍未得到解答,但有足够的证据表明,在预防和治疗心脏病时靶向MAPK-线粒体相互作用具有可能性。本综述的目的是将先前的研究整合到对心脏病(如心肌梗死(缺血)、肥大和心力衰竭)中MAPK和MAPK-线粒体信号传导的讨论中。全面了解相关分子机制以及该领域研究面临的挑战,将有助于开发用于治疗心血管疾病的新型药物和基因操作方法。

相似文献

1
Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives.
Pharmacol Ther. 2014 Nov;144(2):202-25. doi: 10.1016/j.pharmthera.2014.05.013. Epub 2014 Jun 9.
2
Mitogen-activated protein kinases: a new therapeutic target in cardiac pathology.
Mol Cell Biochem. 2003 May;247(1-2):127-38. doi: 10.1023/a:1024119224033.
3
Mitogen-activated protein kinases and Hedgehog-GLI signaling in cancer: A crosstalk providing therapeutic opportunities?
Semin Cancer Biol. 2015 Dec;35:154-67. doi: 10.1016/j.semcancer.2015.08.003. Epub 2015 Aug 17.
4
Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale.
Physiol Rev. 2010 Oct;90(4):1507-46. doi: 10.1152/physrev.00054.2009.
5
Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs.
Cardiovasc Res. 2004 Aug 15;63(3):467-75. doi: 10.1016/j.cardiores.2004.01.021.
7
The Stress-Response MAP Kinase Signaling in Cardiac Arrhythmias.
Rev Physiol Biochem Pharmacol. 2016;172:77-100. doi: 10.1007/112_2016_8.
9
The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy.
Int J Mol Sci. 2016 Dec 8;17(12):2001. doi: 10.3390/ijms17122001.

引用本文的文献

1
Gut Microbiota and Bacterial Extracellular Vesicles: Emerging Roles in Myocardial Remodelling and Cardiac Health.
J Extracell Biol. 2025 Aug 11;4(8):e70079. doi: 10.1002/jex2.70079. eCollection 2025 Aug.
3
MAM kinases: physiological roles, related diseases, and therapeutic perspectives-a systematic review.
Cell Mol Biol Lett. 2025 Mar 28;30(1):35. doi: 10.1186/s11658-025-00714-w.
4
The role of mechanosignaling in the control of myocardial mass.
Am J Physiol Heart Circ Physiol. 2025 Mar 1;328(3):H622-H638. doi: 10.1152/ajpheart.00277.2024. Epub 2024 Dec 31.
5
Cardioprotective Action of the JNK Inhibitor Tryptanthrin Oxime in the Late Period after Myocardial Infarction.
Bull Exp Biol Med. 2024 Sep;177(5):643-647. doi: 10.1007/s10517-024-06241-6. Epub 2024 Sep 30.
8
Mitochondrial Kinase Signaling for Cardioprotection.
Int J Mol Sci. 2024 Apr 19;25(8):4491. doi: 10.3390/ijms25084491.
10
Melatonin protects TEGDMA-induced preodontoblast mitochondrial apoptosis via the JNK/MAPK signaling pathway.
Acta Biochim Biophys Sin (Shanghai). 2024 Mar 25;56(3):393-404. doi: 10.3724/abbs.2023263.

本文引用的文献

1
Mitochondrial permeability transition pore plays a role in the cardioprotection of CB2 receptor against ischemia-reperfusion injury.
Can J Physiol Pharmacol. 2014 Mar;92(3):205-14. doi: 10.1139/cjpp-2013-0293. Epub 2013 Dec 13.
2
Lifelong exercise training modulates cardiac mitochondrial phosphoproteome in rats.
J Proteome Res. 2014 Apr 4;13(4):2045-55. doi: 10.1021/pr4011926. Epub 2014 Mar 4.
3
Heart disease and stroke statistics--2014 update: a report from the American Heart Association.
Circulation. 2014 Jan 21;129(3):e28-e292. doi: 10.1161/01.cir.0000441139.02102.80. Epub 2013 Dec 18.
4
Mitogen-activated protein kinases in innate immunity.
Nat Rev Immunol. 2013 Sep;13(9):679-92. doi: 10.1038/nri3495. Epub 2013 Aug 19.
5
Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics.
Am J Physiol Heart Circ Physiol. 2013 Aug 15;305(4):H459-76. doi: 10.1152/ajpheart.00936.2012. Epub 2013 Jun 7.
6
The mitochondrial permeability transition pore: a mystery solved?
Front Physiol. 2013 May 10;4:95. doi: 10.3389/fphys.2013.00095. eCollection 2013.
7
Interference with ERK(Thr188) phosphorylation impairs pathological but not physiological cardiac hypertrophy.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7440-5. doi: 10.1073/pnas.1221999110. Epub 2013 Apr 15.
10
Dimers of mitochondrial ATP synthase form the permeability transition pore.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5887-92. doi: 10.1073/pnas.1217823110. Epub 2013 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验