Suppr超能文献

金属合金玻璃形成的组成景观。

Compositional landscape for glass formation in metal alloys.

机构信息

Glassimetal Technology Inc., Pasadena, CA 91107; and.

Glassimetal Technology Inc., Pasadena, CA 91107; andKeck Laboratory, California Institute of Technology, Pasadena, CA 91125.

出版信息

Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9031-6. doi: 10.1073/pnas.1407780111. Epub 2014 Jun 9.

Abstract

A high-resolution compositional map of glass-forming ability (GFA) in the Ni-Cr-Nb-P-B system is experimentally determined along various compositional planes. GFA is shown to be a piecewise continuous function formed by intersecting compositional subsurfaces, each associated with a nucleation pathway for a specific crystalline phase. Within each subsurface, GFA varies exponentially with composition, wheres exponential cusps in GFA are observed when crossing from one crystallization pathway to another. The overall GFA is shown to peak at multiple exponential hypercusps that are interconnected by ridges. At these compositions, quenching from the high-temperature melt yields glassy rods with diameters exceeding 1 cm, whereas for compositions far from these cusps the critical rod diameter drops precipitously and levels off to 1 to 2 mm. The compositional landscape of GFA is shown to arise primarily from an interplay between the thermodynamics and kinetics of crystal nucleation, or more precisely, from a competition between driving force for crystallization and liquid fragility.

摘要

实验测定了 Ni-Cr-Nb-P-B 系统中玻璃形成能力(GFA)在各个成分平面上的高分辨率组成图谱。结果表明,GFA 是由相交的组成子表面形成的分段连续函数,每个子表面都与特定晶相的成核途径相关联。在每个子表面内,GFA 随成分呈指数变化,而当从一种结晶途径转变为另一种结晶途径时,GFA 会出现指数拐点。整体 GFA 呈现在多个指数超拐点处,这些拐点由脊线相互连接。在这些成分下,从高温熔体淬火可获得直径超过 1 厘米的玻璃状棒,而对于远离这些拐点的成分,临界棒直径急剧下降并稳定在 1 到 2 毫米。GFA 的组成景观主要源于晶体成核的热力学和动力学之间的相互作用,或者更准确地说,源于结晶驱动力和液体脆性之间的竞争。

相似文献

1
Compositional landscape for glass formation in metal alloys.金属合金玻璃形成的组成景观。
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9031-6. doi: 10.1073/pnas.1407780111. Epub 2014 Jun 9.
4
Physical origin of glass formation from multicomponent systems.多组分体系玻璃形成的物理起源。
Sci Adv. 2020 Dec 11;6(50). doi: 10.1126/sciadv.abd2928. Print 2020 Dec.
6
Influence of preparation pathway on the glass forming ability.制备途径对玻璃形成能力的影响。
Int J Pharm. 2017 Apr 15;521(1-2):232-238. doi: 10.1016/j.ijpharm.2017.02.042. Epub 2017 Feb 21.

引用本文的文献

6
Designing color in metallic glass.金属玻璃中的颜色设计。
Sci Rep. 2019 Mar 1;9(1):3269. doi: 10.1038/s41598-019-40014-w.
9
Liquid-solid joining of bulk metallic glasses.大块金属玻璃的液固连接
Sci Rep. 2016 Jul 29;6:30674. doi: 10.1038/srep30674.
10
General 2.5 power law of metallic glasses.金属玻璃的通用2.5幂律。
Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1714-8. doi: 10.1073/pnas.1525390113. Epub 2016 Feb 1.

本文引用的文献

1
Formation of glasses from liquids and biopolymers.由液体和生物聚合物形成玻璃。
Science. 1995 Mar 31;267(5206):1924-35. doi: 10.1126/science.267.5206.1924.
3
Strain rate induced crystallization in bulk metallic glass-forming liquid.
Phys Rev Lett. 2006 Feb 24;96(7):075503. doi: 10.1103/PhysRevLett.96.075503. Epub 2006 Feb 22.
4
Glass formation criterion for various glass-forming systems.各种玻璃形成体系的玻璃形成判据。
Phys Rev Lett. 2003 Sep 12;91(11):115505. doi: 10.1103/PhysRevLett.91.115505. Epub 2003 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验