Suppr超能文献

细胞诱导的明胶甲基丙烯酸酯微滴生成中的流聚焦不稳定性。

Cell-induced flow-focusing instability in gelatin methacrylate microdroplet generation.

机构信息

Hemorheology Research Institute, Chonbuk National University, Jeonju 561-756, South Korea.

Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, South Korea.

出版信息

Biomicrofluidics. 2014 May 27;8(3):036503. doi: 10.1063/1.4880375. eCollection 2014 May.

Abstract

Photo-crosslinkable gelatin methacrylate (GelMa) microspheres are applicable to deliver cells or drugs in biological or biomedical applications. To fabricate GelMa microdroplets, a flow focusing technique with advantages of size control and rapid production was used in a T-junction microfluidic device. Instability played an important role in promoting microdroplet uniformity. 5 wt. % GelMa prepolymer solution mixed with cells affected cell-induced instability. At low flow rate ratio of GelMa to mineral oil below 0.200, stability was maintained regardless of GelMa concentration (5 and 8 wt. %) and cell presence, which led to uniform microdroplet generation. In contrast, instability at high flow rate ratio above 0.200 was worsened by cell presence and unstable jetting length, resulting in the generation of non-uniform cell-laden microdroplets. Therefore, the effect of cell-induced instability on microdroplet generation was minimized at a low flow rate ratio.

摘要

光交联明胶甲基丙烯酸酯(GelMa)微球适用于在生物或生物医学应用中输送细胞或药物。为了制备 GelMa 微液滴,在 T 形 Junction 微流控装置中使用具有尺寸控制和快速生产优点的流聚焦技术。不稳定性在促进微液滴均匀性方面起着重要作用。将细胞与 5wt.% GelMa 预聚物溶液混合会影响细胞诱导的不稳定性。在 GelMa 与矿物油的流速比低于 0.200 的低流速比下,无论 GelMa 浓度(5wt.%和 8wt.%)和细胞存在与否,都能保持稳定性,从而产生均匀的微液滴。相比之下,在高流速比(高于 0.200)下,细胞存在和不稳定的射流长度会加剧不稳定性,导致非均匀的载细胞微液滴的生成。因此,在低流速比下,细胞诱导的不稳定性对微液滴生成的影响最小化。

相似文献

1
Cell-induced flow-focusing instability in gelatin methacrylate microdroplet generation.
Biomicrofluidics. 2014 May 27;8(3):036503. doi: 10.1063/1.4880375. eCollection 2014 May.
3
Electro-Assisted Bioprinting of Low-Concentration GelMA Microdroplets.
Small. 2019 Jan;15(4):e1804216. doi: 10.1002/smll.201804216. Epub 2018 Dec 20.
4
User-friendly microfluidic manufacturing of hydrogel microspheres with sharp needle.
Biofabrication. 2022 Mar 7;14(2). doi: 10.1088/1758-5090/ac57a5.
5
hDPSC-laden GelMA microspheres fabricated using electrostatic microdroplet method for endodontic regeneration.
Mater Sci Eng C Mater Biol Appl. 2021 Feb;121:111850. doi: 10.1016/j.msec.2020.111850. Epub 2021 Jan 6.
7
Platelet lysate functionalized gelatin methacrylate microspheres for improving angiogenesis in endodontic regeneration.
Acta Biomater. 2021 Dec;136:441-455. doi: 10.1016/j.actbio.2021.09.024. Epub 2021 Sep 20.
8
Photo-crosslinkable hydrogel-based 3D microfluidic culture device.
Electrophoresis. 2015 Apr;36(7-8):994-1001. doi: 10.1002/elps.201400465. Epub 2015 Mar 24.
9
Calcium Carbonate/Gelatin Methacrylate Microspheres for 3D Cell Culture in Bone Tissue Engineering.
Tissue Eng Part C Methods. 2020 Aug;26(8):418-432. doi: 10.1089/ten.TEC.2020.0064. Epub 2020 Jul 28.
10
3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
ACS Appl Mater Interfaces. 2018 Feb 28;10(8):6849-6857. doi: 10.1021/acsami.7b16059. Epub 2018 Feb 15.

引用本文的文献

2
Microfluidics-based fabrication of cell-laden microgels.
Biomicrofluidics. 2020 Mar 5;14(2):021501. doi: 10.1063/1.5134060. eCollection 2020 Mar.
4
Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair.
Trends Biotechnol. 2016 May;34(5):394-407. doi: 10.1016/j.tibtech.2016.01.002. Epub 2016 Feb 9.
5
Gelatin methacrylate microspheres for controlled growth factor release.
Acta Biomater. 2015 Feb;13:101-10. doi: 10.1016/j.actbio.2014.11.028. Epub 2014 Nov 20.

本文引用的文献

1
Incorporating quantum dots into polymer microspheres via a spray-drying and thermal-denaturizing approach.
Nanotechnology. 2006 Mar 28;17(6):1791-6. doi: 10.1088/0957-4484/17/6/041. Epub 2006 Mar 3.
2
Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide.
Small. 2014 Feb 12;10(3):514-23. doi: 10.1002/smll.201302182. Epub 2013 Oct 11.
3
Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide.
Adv Mater. 2013 Nov 26;25(44):6385-91. doi: 10.1002/adma.201301082. Epub 2013 Sep 1.
4
Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery.
Int J Pharm. 2011 Jul 29;414(1-2):112-7. doi: 10.1016/j.ijpharm.2011.05.007. Epub 2011 May 10.
5
Directed 3D cell alignment and elongation in microengineered hydrogels.
Biomaterials. 2010 Sep;31(27):6941-6951. doi: 10.1016/j.biomaterials.2010.05.056. Epub 2010 Jun 19.
6
Cell-laden microengineered gelatin methacrylate hydrogels.
Biomaterials. 2010 Jul;31(21):5536-44. doi: 10.1016/j.biomaterials.2010.03.064. Epub 2010 Apr 24.
7
Cell encapsulation using biopolymer gels for regenerative medicine.
Biotechnol Lett. 2010 Jun;32(6):733-42. doi: 10.1007/s10529-010-0221-0. Epub 2010 Feb 13.
9
Lung-targeting microspheres of carboplatin.
Int J Pharm. 2003 Oct 20;265(1-2):1-11. doi: 10.1016/s0378-5173(03)00332-6.
10
Biodegradable microspheres for protein delivery.
J Control Release. 2003 Jul 31;90(3):261-80. doi: 10.1016/s0168-3659(03)00194-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验