Suppr超能文献

时变时滞神经网络的时滞相关稳定性改进分析。

Improved delay-dependent stability analysis for neural networks with time-varying delays.

机构信息

School of Sciences, Southwest Petroleum University, Chengdu, Sichuan 610500, China.

出版信息

ISA Trans. 2014 Jul;53(4):1000-5. doi: 10.1016/j.isatra.2014.05.010. Epub 2014 Jun 3.

Abstract

In this paper, the problem of delay-dependent asymptotic stability analysis for neural networks with time-varying delays is considered. A new class of Lyapunov functional is proposed by considering the information of neuron activation functions adequately. By using the delay-partitioning method and the reciprocally convex technique, some less conservative stability criteria are obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the effectiveness of the derived method.

摘要

本文研究了时变时滞神经网络的时滞相关渐近稳定性分析问题。通过充分考虑神经元激活函数的信息,提出了一类新的李雅普诺夫泛函。利用时滞分区法和互凸技术,基于线性矩阵不等式(LMI)得到了一些更保守的稳定性判据。最后,通过两个数值算例验证了所提出方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验