Suppr超能文献

跟腱剪切波速度的空间变化。

Spatial variations in Achilles tendon shear wave speed.

机构信息

Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

J Biomech. 2014 Aug 22;47(11):2685-92. doi: 10.1016/j.jbiomech.2014.05.008. Epub 2014 May 16.

Abstract

Supersonic shear imaging (SSI) is an ultrasound imaging modality that can provide insight into tissue mechanics by measuring shear wave propagation speed, a property that depends on tissue elasticity. SSI has previously been used to characterize the increase in Achilles tendon shear wave speed that occurs with loading, an effect attributable to the strain-stiffening behavior of the tissue. However, little is known about how shear wave speed varies spatially, which is important, given the anatomical variation that occurs between the calcaneus insertion and the gastrocnemius musculotendon junction. The purpose of this study was to investigate spatial variations in shear wave speed along medial and lateral paths of the Achilles tendon for three different ankle postures: resting ankle angle (R, i.e. neutral), plantarflexed (P; R - 15°), and dorsiflexed (D; R+15°). We observed significant spatial and posture variations in tendon shear wave speed in ten healthy young adults. Shear wave speeds in the Achilles free tendon averaged 12 ± 1.2m/s in a resting position, but decreased to 7.2 ± 1.8m/s with passive plantarflexion. Distal tendon shear wave speeds often reached the maximum tracking limit (16.3m/s) of the system when the ankle was in the passively dorsiflexed posture (+15° from R). At a fixed posture, shear wave speeds decreased significantly from the free tendon to the gastrocnemius musculotendon junction, with slightly higher speeds measured on the medial side than on the lateral side. Shear wave speeds were only weakly correlated with the thickness and depth of the tendon, suggesting that the distal-to-proximal variations may reflect greater compliance in the aponeurosis relative to the free tendon. The results highlight the importance of considering both limb posture and transducer positioning when using SSI for biomechanical and clinical assessments of the Achilles tendon.

摘要

超声剪切波成像(SSI)是一种超声成像方式,通过测量剪切波传播速度来提供组织力学的洞察力,该速度取决于组织弹性。SSI 先前已被用于描述跟腱的剪切波速度随加载而增加,这归因于组织的应变硬化行为。然而,关于剪切波速度如何在空间上变化知之甚少,这很重要,因为跟骨插入部和腓肠肌腱-肌腹连接处之间存在解剖学差异。本研究的目的是在三个不同的踝关节姿势(休息踝关节角度(R,即中立)、跖屈(P;R-15°)和背屈(D;R+15°))下,研究跟腱内侧和外侧路径的剪切波速度的空间变化。我们观察到十名健康年轻成年人的跟腱的剪切波速度存在显著的空间和姿势变化。在休息位置,跟腱自由部分的剪切波速度平均为 12 ± 1.2m/s,但在被动跖屈时降至 7.2 ± 1.8m/s。当踝关节处于被动背屈姿势(从 R 增加 15°)时,远端跟腱的剪切波速度通常达到系统的最大跟踪限制(16.3m/s)。在固定姿势下,从自由腱到腓肠肌腱-肌腹连接处的剪切波速度显著降低,内侧测量的速度略高于外侧。剪切波速度与跟腱的厚度和深度仅呈弱相关,这表明从远端到近端的变化可能反映了相对于自由腱,跟腱的腱膜的顺应性更大。结果强调了在使用 SSI 进行跟腱的生物力学和临床评估时,考虑肢体姿势和换能器定位的重要性。

相似文献

1
Spatial variations in Achilles tendon shear wave speed.
J Biomech. 2014 Aug 22;47(11):2685-92. doi: 10.1016/j.jbiomech.2014.05.008. Epub 2014 May 16.
2
Quantitative ultrasound mapping of regional variations in shear wave speeds of the aging Achilles tendon.
Eur Radiol. 2017 Feb;27(2):474-482. doi: 10.1007/s00330-016-4409-0. Epub 2016 May 28.
3
Middle-aged adults exhibit altered spatial variations in Achilles tendon wave speed.
Physiol Meas. 2015 Jul;36(7):1485-96. doi: 10.1088/0967-3334/36/7/1485. Epub 2015 May 28.
4
The association of muscle and tendon elasticity with passive joint stiffness: In vivo measurements using ultrasound shear wave elastography.
Clin Biomech (Bristol). 2015 Dec;30(10):1230-5. doi: 10.1016/j.clinbiomech.2015.07.014. Epub 2015 Aug 14.
5
Regional shear wave elastography of Achilles tendinopathy in symptomatic versus contralateral Achilles tendons.
Eur Radiol. 2023 Jan;33(1):720-729. doi: 10.1007/s00330-022-08957-3. Epub 2022 Jun 28.
6
Slack length of gastrocnemius medialis and Achilles tendon occurs at different ankle angles.
J Biomech. 2013 Sep 27;46(14):2534-8. doi: 10.1016/j.jbiomech.2013.07.015. Epub 2013 Jul 26.
7
Non-uniform displacements within the Achilles tendon observed during passive and eccentric loading.
J Biomech. 2014 Sep 22;47(12):2831-5. doi: 10.1016/j.jbiomech.2014.07.032. Epub 2014 Aug 8.
8
Ultrasound-tensiometry: A new method for measuring differential loading within a tendon during movement.
Gait Posture. 2024 Sep;113:352-358. doi: 10.1016/j.gaitpost.2024.06.026. Epub 2024 Jun 29.
9
Shear Wave Predictions of Achilles Tendon Loading during Human Walking.
Sci Rep. 2019 Sep 17;9(1):13419. doi: 10.1038/s41598-019-49063-7.
10
Achilles tendon shear wave speed tracks the dynamic modulation of standing balance.
Physiol Rep. 2019 Dec;7(23):e14298. doi: 10.14814/phy2.14298.

引用本文的文献

1
Shear wave propagation as a noninvasive metric of loading and microdamage in tendon fascicles.
J Mech Behav Biomed Mater. 2025 Sep;169:107081. doi: 10.1016/j.jmbbm.2025.107081. Epub 2025 May 23.
2
Relationship Between Structure and Age in Healthy Achilles Tendons.
J Orthop Res. 2025 Jul;43(7):1250-1258. doi: 10.1002/jor.26080. Epub 2025 Apr 1.
5
Utility of shear wave elastography in evaluation of children with chronic kidney disease.
Pediatr Nephrol. 2025 Jun;40(6):2021-2028. doi: 10.1007/s00467-024-06573-5. Epub 2024 Nov 18.
7
Achilles tendon and triceps surae muscle properties in athletes.
Eur J Appl Physiol. 2024 Feb;124(2):633-647. doi: 10.1007/s00421-023-05348-4. Epub 2023 Nov 11.
8
Elastography in the assessment of the Achilles tendon: a systematic review of measurement properties.
J Foot Ankle Res. 2023 Apr 27;16(1):23. doi: 10.1186/s13047-023-00623-1.
10
Evaluation of Achilles Tendon Stiffness as Measured by Shear Wave Elastography in Female College Athletes Compared With Nonathletes.
Sports Health. 2024 Jan-Feb;16(1):12-18. doi: 10.1177/19417381231153657. Epub 2023 Mar 1.

本文引用的文献

1
In vivo evaluation of the elastic anisotropy of the human Achilles tendon using shear wave dispersion analysis.
Phys Med Biol. 2014 Feb 7;59(3):505-23. doi: 10.1088/0031-9155/59/3/505. Epub 2014 Jan 17.
2
Visualizing tendon elasticity in an ex vivo partial tear model.
Ultrasound Med Biol. 2014 Jan;40(1):158-67. doi: 10.1016/j.ultrasmedbio.2013.08.022. Epub 2013 Nov 7.
3
Slack length of gastrocnemius medialis and Achilles tendon occurs at different ankle angles.
J Biomech. 2013 Sep 27;46(14):2534-8. doi: 10.1016/j.jbiomech.2013.07.015. Epub 2013 Jul 26.
4
Relationship between shear elastic modulus and passive muscle force: an ex-vivo study.
J Biomech. 2013 Aug 9;46(12):2053-9. doi: 10.1016/j.jbiomech.2013.05.016. Epub 2013 Jun 13.
5
Length and activation dependent variations in muscle shear wave speed.
Physiol Meas. 2013 Jun;34(6):713-21. doi: 10.1088/0967-3334/34/6/713. Epub 2013 May 29.
6
Biomechanical properties of the calcaneal tendon in vivo assessed by transient shear wave elastography.
Skeletal Radiol. 2013 Aug;42(8):1143-50. doi: 10.1007/s00256-013-1649-9. Epub 2013 May 25.
7
ShearWave elastography: repeatability for measurement of tendon stiffness.
Skeletal Radiol. 2013 Aug;42(8):1151-6. doi: 10.1007/s00256-013-1629-0. Epub 2013 May 3.
8
Shear wave elastographic characterization of normal and torn achilles tendons: a pilot study.
J Ultrasound Med. 2013 Mar;32(3):449-55. doi: 10.7863/jum.2013.32.3.449.
10
Supersonic shear imaging provides a reliable measurement of resting muscle shear elastic modulus.
Physiol Meas. 2012 Mar;33(3):N19-28. doi: 10.1088/0967-3334/33/3/N19. Epub 2012 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验