Chen Jiangyao, Zhang Haimin, Liu Porun, Wang Yun, Liu Xiaolu, Li Guiying, An Taicheng, Zhao Huijun
State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Centre for Clean Environment and Energy, Griffith University, Gold Coast Campus, QLD 4222, Australia.
Centre for Clean Environment and Energy, Griffith University, Gold Coast Campus, QLD 4222, Australia.
J Colloid Interface Sci. 2014 Sep 1;429:53-61. doi: 10.1016/j.jcis.2014.05.012. Epub 2014 May 22.
Rutile TiO2 nanostructured film with exposed pyramid-shaped (111) surface was successfully fabricated using metal titanium foil as substrate through a facile vapor-phase hydrothermal method. The fabricated rutile TiO2 film was composed of vertically aligned rod-like structures with diameters ranged from 400 to 700 nm and thickness of ca. 2.0 μm. The obtained rutile TiO2 film as photoanode exhibited excellent photoelectrocatalytic activity toward water oxidation and rhodamine B decolorization under UV illumination, which was more than 3.5 and 1.2 times of that obtained by highly ordered anatase TiO2 nanotube array film photoanode under the same experimental conditions, respectively. The excellent photoelectrocatalytic performance of the rutile TiO2 film photoanode could be due to the superior photoelectron transfer property and the high oxidative capability of {111} crystal facets. The superior photoelectron transfer capability of the photoanodes was manifested by the inherent resistance (R0) of the photoanodes using a simple photoelectrochemical method. The calculated R0 values were 50.5 and 86.2 Ω for the rutile TiO2 nanostructured film and anatase TiO2 nanotube array film, respectively. Lower R0 value of the rutile TiO2 photoanode indicated a superior photoelectron transfer capability owing to good single crystal property of the rod-like rutile nanostructure. Almost identical valence band level (1.94 eV) of the rutile TiO2 nanostructured film and anatase TiO2 nanotube array film (meaning a similar oxidation capability) further confirmed the significant role of photoelectron transfer capability and exposed high-energy {111} crystal facets for improved photoelectrocatalytic performance of the rutile TiO2 nanostructured film photoanode.
以金属钛箔为基底,通过简便的气相水热法成功制备了具有暴露的金字塔形(111)表面的金红石型TiO₂纳米结构薄膜。制备的金红石型TiO₂薄膜由垂直排列的棒状结构组成,直径范围为400至700nm,厚度约为2.0μm。所制备的金红石型TiO₂薄膜作为光阳极,在紫外光照射下对水氧化和罗丹明B脱色表现出优异的光电催化活性,分别是相同实验条件下高度有序的锐钛矿型TiO₂纳米管阵列薄膜光阳极的3.5倍和1.2倍以上。金红石型TiO₂薄膜光阳极优异的光电催化性能可能归因于{111}晶面优异的光电子转移性能和高氧化能力。通过简单的光电化学方法,用光阳极的固有电阻(R₀)来表征光阳极优异的光电子转移能力。计算得到的金红石型TiO₂纳米结构薄膜和锐钛矿型TiO₂纳米管阵列薄膜的R₀值分别为50.5Ω和86.2Ω。金红石型TiO₂光阳极较低的R₀值表明由于棒状金红石纳米结构良好的单晶性质,其具有优异的光电子转移能力。金红石型TiO₂纳米结构薄膜和锐钛矿型TiO₂纳米管阵列薄膜几乎相同的价带水平(1.94eV)(意味着氧化能力相似)进一步证实了光电子转移能力和暴露的高能{111}晶面对提高金红石型TiO₂纳米结构薄膜光阳极光电催化性能的重要作用。