Bannister Kirsty, Lee Yeon Sun, Goncalves Leonor, Porreca Frank, Lai Josephine, Dickenson Anthony H
Department of Neuroscience, Pharmacology and Physiology, University College London, Gower Street, London WC1E 6BT, UK.
Department of Pharmacology, College of Medicine, University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA.
Neuropharmacology. 2014 Oct;85:375-83. doi: 10.1016/j.neuropharm.2014.06.005. Epub 2014 Jun 14.
Dynorphin A is an endogenous opioid peptide derived from the precursor prodynorphin. The proteolytic fragment dynorphin A (1-17) exhibits inhibitory effects via opioid receptors. Paradoxically, the activity of the dynorphin system increases with chronic pain and neuropathy is associated with the up-regulation of dynorphin biosynthesis. Dynorphin A (1-17) is cleaved in vivo to produce a non-opioid fragment, dynorphin A (2-17). Previously, a mechanism by which the non-opioid fragment promotes pain through agonist action at bradykinin receptors was revealed. Bradykinin receptor expression is up-regulated after nerve injury and both a truncated version of non-opioid fragment dynorphin A (2-17), referred to as 'Ligand 10', and novel bradykinin receptor antagonist 'Ligand 14', are known to bind to the bradykinin receptor. Here we show that Ligand 10 facilitates the response of wide dynamic range (WDR) neurons to innocuous and noxious mechanical stimuli in neuropathic, but not naïve, animals, while Ligand 14 exhibits inhibitory effects in neuropathic animals only. Furthermore, we reveal an inhibitory effect of Ligand 14 in naïve animals by pre-dosing with either Ligand 10 or a 5-HT3 receptor agonist to reflect activation of descending excitatory drives. Thus remarkably, by mimicking pro-excitatory pharmacological changes that occur after nerve injury in a naïve animal, we induce a state whereby the inhibitory actions of Ligand 14 are now effective. Ultimately our data support an increasing number of studies that suggest that blocking spinal bradykinin receptors may have a therapeutic potential in chronic pain states, here, in particular, in neuropathic pain.
强啡肽A是一种源自前强啡肽原的内源性阿片肽。蛋白水解片段强啡肽A(1-17)通过阿片受体发挥抑制作用。矛盾的是,强啡肽系统的活性会随着慢性疼痛而增加,并且神经病变与强啡肽生物合成的上调有关。强啡肽A(1-17)在体内被切割产生一个非阿片类片段,即强啡肽A(2-17)。此前,已揭示了一种机制,即该非阿片类片段通过对缓激肽受体的激动剂作用来促进疼痛。神经损伤后缓激肽受体表达上调,并且已知一种被称为“配体10”的非阿片类片段强啡肽A(2-17)的截短形式以及新型缓激肽受体拮抗剂“配体14”都能与缓激肽受体结合。在此我们表明,配体10促进了神经病变动物而非正常动物中广动力范围(WDR)神经元对无害和有害机械刺激的反应,而配体14仅在神经病变动物中表现出抑制作用。此外,我们通过预先给予配体10或5-HT3受体激动剂以反映下行兴奋性驱动的激活,揭示了配体14在正常动物中的抑制作用。因此,值得注意的是,通过模拟正常动物神经损伤后发生的促兴奋性药理学变化,我们诱导出一种状态,使得配体14的抑制作用现在变得有效。最终,我们的数据支持了越来越多的研究,这些研究表明阻断脊髓缓激肽受体在慢性疼痛状态下可能具有治疗潜力,在此尤其针对神经性疼痛。