Krzciuk Karina, Gałuszka Agnieszka
a Geochemistry and the Environment Division , Institute of Chemistry, Jan Kochanowski University , Kielce , Poland.
Crit Rev Biotechnol. 2015;35(4):522-32. doi: 10.3109/07388551.2014.922525. Epub 2014 Jun 18.
Specific plant species that can take up and accumulate abnormally high concentrations of elements in their aboveground tissues are referred to as "hyperaccumulators". The use of this term is justified in the case of enormous element-binding capacity of plants growing in their natural habitats and showing no toxicity symptoms. An increasing interest in the study of hyperaccumulators results from their potential applications in environmental biotechnology (phytoremediation, phytomining) and their emerging role in nanotechnology. The highest number of plant species with confirmed hyperaccumulative properties has been reported for hyperaccumulators of nickel, cadmium, zinc, manganese, arsenic and selenium. More limited data exist for plants accumulating other elements, including common pollutants (chromium, lead and boron) or elements of commercial value, such as copper, gold and rare earth elements. Different approaches have been used for the study of hyperaccumulators - geobotanical, chemical, biochemical and genetic. The chemical approach is the most important in screening for new hyperaccumulators. This article presents and critically reviews current trends in new hyperaccumulator research, emphasizing analytical methodology that is applied in identification of new hyperaccumulators of trace elements and its future perspectives.
能够在地上组织中吸收并积累异常高浓度元素的特定植物物种被称为“超积累植物”。对于生长在其自然栖息地且未表现出毒性症状、具有巨大元素结合能力的植物而言,使用这一术语是合理的。对超积累植物研究兴趣的不断增加源于它们在环境生物技术(植物修复、植物采矿)中的潜在应用以及在纳米技术中日益凸显的作用。已报道具有超积累特性的植物物种数量最多的是镍、镉、锌、锰、砷和硒的超积累植物。关于积累其他元素的植物的数据则较为有限,这些元素包括常见污染物(铬、铅和硼)或具有商业价值的元素,如铜、金和稀土元素。研究超积累植物采用了不同的方法——地质植物学、化学、生物化学和遗传学方法。化学方法在筛选新的超积累植物方面最为重要。本文介绍并批判性地回顾了新超积累植物研究的当前趋势,重点强调了用于鉴定微量元素新超积累植物的分析方法及其未来前景。