Moutin Enora, Compan Vincent, Raynaud Fabrice, Clerté Caroline, Bouquier Nathalie, Labesse Gilles, Ferguson Matthew L, Fagni Laurent, Royer Catherine A, Perroy Julie
CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, F-34094, France INSERM, U661, Montpellier, F-34094, France Universités de Montpellier 1 & 2, UMR-5203, Montpellier, F-34094, France.
Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
J Cell Sci. 2014 Aug 15;127(Pt 16):3451-62. doi: 10.1242/jcs.145748. Epub 2014 Jun 17.
Quantitative spatio-temporal characterization of protein interactions in living cells remains a major challenge facing modern biology. We have investigated in living neurons the spatial dependence of the stoichiometry of interactions between two core proteins of the N-methyl-D-aspartate (NMDA)-receptor-associated scaffolding complex, GKAP (also known as DLGAP1) and DLC2 (also known as DYNLL2), using a novel variation of fluorescence fluctuation microscopy called two-photon scanning number and brightness (sN&B). We found that dimerization of DLC2 was required for its interaction with GKAP, which, in turn, potentiated GKAP self-association. In the dendritic shaft, the DLC2-GKAP hetero-oligomeric complexes were composed mainly of two DLC2 and two GKAP monomers, whereas, in spines, the hetero-complexes were much larger, with an average of ∼16 DLC2 and ∼13 GKAP monomers. Disruption of the GKAP-DLC2 interaction strongly destabilized the oligomers, decreasing the spine-preferential localization of GKAP and inhibiting NMDA receptor activity. Hence, DLC2 serves a hub function in the control of glutamatergic transmission by ordering GKAP-containing complexes in dendritic spines. Beyond illuminating the role of DLC2-GKAP interactions in glutamatergic signaling, these data underscore the power of the sN&B approach for quantitative spatio-temporal imaging of other important protein complexes.
对活细胞中蛋白质相互作用进行定量的时空表征仍然是现代生物学面临的一项重大挑战。我们利用一种名为双光子扫描数量与亮度(sN&B)的荧光涨落显微镜新技术变体,研究了活神经元中N-甲基-D-天冬氨酸(NMDA)受体相关支架复合物的两种核心蛋白GKAP(也称为DLGAP1)和DLC2(也称为DYNLL2)之间相互作用化学计量的空间依赖性。我们发现,DLC2与GKAP相互作用需要其二聚化,而这反过来又增强了GKAP的自我缔合。在树突干中,DLC2-GKAP异源寡聚复合物主要由两个DLC2单体和两个GKAP单体组成,而在棘突中,异源复合物要大得多,平均有16个DLC2单体和13个GKAP单体。GKAP-DLC2相互作用的破坏强烈地破坏了寡聚体的稳定性,降低了GKAP在棘突中的优先定位,并抑制了NMDA受体活性。因此,DLC2通过在树突棘中排列含GKAP的复合物,在控制谷氨酸能传递中发挥枢纽作用。除了阐明DLC2-GKAP相互作用在谷氨酸能信号传导中的作用外,这些数据还强调了sN&B方法对其他重要蛋白质复合物进行定量时空成像的能力。