Jiménez-Rojo Noemi, Sot Jesús, Viguera Ana R, Collado M Isabel, Torrecillas Alejandro, Gómez-Fernández J C, Goñi Félix M, Alonso Alicia
Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
Servicio General de Resonancia Magnética Nuclear, Universidad del País Vasco, Bilbao, Spain.
Biophys J. 2014 Jun 17;106(12):2577-84. doi: 10.1016/j.bpj.2014.04.038.
Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease.
鞘氨醇[(2S,3R,4E)-2-氨基-4-十八碳烯-1,3-二醇]是鞘脂中最常见的鞘氨醇长链碱基。它是重要细胞信号分子(如神经酰胺)的前体。在过去十年中,已证明它本身可作为一种有效的代谢信号分子,通过激活多种蛋白激酶发挥作用。此外,已发现鞘氨醇可使磷脂双层膜通透,导致囊泡泄漏。本论文旨在分析这种生物活性脂质诱导囊泡内容物释放的机制,以及带负电荷的双层膜在释放过程中的作用。已应用荧光寿命测量和共聚焦荧光显微镜来观察鞘氨醇从大单层囊泡和巨型单层囊泡中流出的机制;检测到一种分级释放的流出过程。此外,停流测量表明囊泡通透速率随鞘氨醇浓度增加而增加。由于在生理pH值下鞘氨醇带净正电荷,它与带负电荷的磷脂(例如含有磷脂酸以及鞘磷脂、磷脂酰乙醇胺和胆固醇的双层膜)相互作用会导致囊泡内容物释放,比与电中性双层膜的相互作用更快。此外,磷31核磁共振和X射线数据表明鞘氨醇有能力促进带负电荷膜中形成非双层(立方相)中间体。这些数据可能解释了尼曼-匹克C1型疾病的发病机制。