Suppr超能文献

[固定化根瘤菌菌株BK-20生产L(+)-酒石酸]

[Production of L(+)-tartaric acid by immobilized Rhizobium strain BK-20].

作者信息

Lan Xiang, Bao Wenna, Pan Haifeng, Xie Zhipeng, Zhang Jianguo

出版信息

Sheng Wu Gong Cheng Xue Bao. 2014 Feb;30(2):315-9.

Abstract

The cis-epoxysuccinate hydrolase (CESH) from Rhizobium strain BK-20 is the key enzyme for L(+)-tartaric acid production. To establish a highly efficient and stable production process, we first optimized the enzyme production from Rhizobium strain BK-20, and then developed an immobilized cell-culture process for sustained production of L(+)-tartaric acid. The enzyme activity of free cells reached (3 498.0 +/- 142.6) U/g, and increased by 643% after optimization. The enzyme activity of immobilized cells reached (2 817.2 +/- 226.7) U/g, under the optimal condition with sodium alginate as carrier, cell concentration at 10% (W/V) and gel concentration at 1.5% (W/V). The immobilized cells preserved high enzyme activity and normal structure after 10 repeated batches. The conversion rate of the substrate was more than 98%, indicating its excellent production stability.

摘要

来自根瘤菌菌株BK - 20的顺式环氧琥珀酸水解酶(CESH)是生产L(+) - 酒石酸的关键酶。为建立高效稳定的生产工艺,我们首先优化了根瘤菌菌株BK - 20的酶生产,然后开发了一种固定化细胞培养工艺以持续生产L(+) - 酒石酸。游离细胞的酶活性达到(3498.0±142.6) U/g,优化后提高了643%。在以海藻酸钠为载体、细胞浓度为10%(W/V)、凝胶浓度为1.5%(W/V)的最佳条件下,固定化细胞的酶活性达到(2817.2±226.7) U/g。经过10次重复批次后,固定化细胞保持了高酶活性和正常结构。底物转化率超过98%,表明其具有优异的生产稳定性。

相似文献

1
[Production of L(+)-tartaric acid by immobilized Rhizobium strain BK-20].
Sheng Wu Gong Cheng Xue Bao. 2014 Feb;30(2):315-9.
2
Isolation of the stable strain Labrys sp. BK-8 for L(+)-tartaric acid production.
J Biosci Bioeng. 2015 May;119(5):538-42. doi: 10.1016/j.jbiosc.2014.10.013. Epub 2014 Nov 15.
3
Immobilization of Escherichia coli cells with cis-epoxysuccinate hydrolase activity for D(-)-tartaric acid production.
Biotechnol Lett. 2010 Feb;32(2):235-41. doi: 10.1007/s10529-009-0134-y. Epub 2009 Oct 21.
4
Production of tartaric acid using immobilized recominant cis-epoxysuccinate hydrolase.
Biotechnol Lett. 2017 Dec;39(12):1859-1863. doi: 10.1007/s10529-017-2419-x. Epub 2017 Sep 5.
5
Isolation of a novel strain Aspergillus niger WH-2 for production of L(+)-tartaric acid under acidic condition.
Biotechnol Lett. 2020 Apr;42(4):605-612. doi: 10.1007/s10529-020-02799-z. Epub 2020 Jan 18.
6
Ultrasound-assisted d-tartaric acid whole-cell bioconversion by recombinant Escherichia coli.
Ultrason Sonochem. 2018 Apr;42:11-17. doi: 10.1016/j.ultsonch.2017.11.002. Epub 2017 Nov 2.
7
Purification and characterization of a novel cis-epoxysuccinate hydrolase from Klebsiella sp. that produces L(+)-tartaric acid.
Biotechnol Lett. 2014 Nov;36(11):2325-30. doi: 10.1007/s10529-014-1614-2. Epub 2014 Jul 22.
8
Enantiomeric Tartaric Acid Production Using -Epoxysuccinate Hydrolase: History and Perspectives.
Molecules. 2019 Mar 5;24(5):903. doi: 10.3390/molecules24050903.
9
Molecular cloning and characterization of a cis-epoxysuccinate hydrolase from Bordetella sp. BK-52.
J Microbiol Biotechnol. 2010 Apr;20(4):659-65. doi: 10.4014/jmb.0905.05059.
10
Deciphering the stereo-specific catalytic mechanisms of cis-epoxysuccinate hydrolases producing L(+)-tartaric acid.
J Biol Chem. 2024 Feb;300(2):105635. doi: 10.1016/j.jbc.2024.105635. Epub 2024 Jan 8.

引用本文的文献

1
Development of highly efficient whole-cell catalysts of cis-epoxysuccinic acid hydrolase by surface display.
Bioresour Bioprocess. 2022 Aug 29;9(1):92. doi: 10.1186/s40643-022-00584-6.
2
Enantiomeric Tartaric Acid Production Using -Epoxysuccinate Hydrolase: History and Perspectives.
Molecules. 2019 Mar 5;24(5):903. doi: 10.3390/molecules24050903.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验