Laboratorio Internacional de Cambio Global (LINC-Global), Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Esporles, Miquel Marqués 21, Mallorca 07190, Balearic Islands, Spain Agroscope, Institute for Sustainability Sciences, Reckenholzstrasse 191, Zurich 8046, Switzerland
Laboratorio Internacional de Cambio Global (LINC-Global), Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Esporles, Miquel Marqués 21, Mallorca 07190, Balearic Islands, Spain.
Proc Biol Sci. 2014 Aug 7;281(1788):20140773. doi: 10.1098/rspb.2014.0773.
Compartmentalization-the organization of ecological interaction networks into subsets of species that do not interact with other subsets (true compartments) or interact more frequently among themselves than with other species (modules)-has been identified as a key property for the functioning, stability and evolution of ecological communities. Invasions by entomophilous invasive plants may profoundly alter the way interaction networks are compartmentalized. We analysed a comprehensive dataset of 40 paired plant-pollinator networks (invaded versus uninvaded) to test this hypothesis. We show that invasive plants have higher generalization levels with respect to their pollinators than natives. The consequences for network topology are that-rather than displacing native species from the network-plant invaders attracting pollinators into invaded modules tend to play new important topological roles (i.e. network hubs, module hubs and connectors) and cause role shifts in native species, creating larger modules that are more connected among each other. While the number of true compartments was lower in invaded compared with uninvaded networks, the effect of invasion on modularity was contingent on the study system. Interestingly, the generalization level of the invasive plants partially explains this pattern, with more generalized invaders contributing to a lower modularity. Our findings indicate that the altered interaction structure of invaded networks makes them more robust against simulated random secondary species extinctions, but more vulnerable when the typically highly connected invasive plants go extinct first. The consequences and pathways by which biological invasions alter the interaction structure of plant-pollinator communities highlighted in this study may have important dynamical and functional implications, for example, by influencing multi-species reciprocal selection regimes and coevolutionary processes.
区隔化——即将生态相互作用网络组织成不与其他子集相互作用(真实区隔)或彼此之间相互作用比与其他物种更频繁(模块)的物种子集——已被确定为生态群落功能、稳定性和进化的关键属性。传粉昆虫入侵的植物可能会深刻改变相互作用网络的区隔方式。我们分析了 40 对植物-传粉者网络(入侵与未入侵)的综合数据集,以检验这一假设。我们表明,与本地植物相比,入侵植物与传粉者的泛化程度更高。网络拓扑的结果是,植物入侵者吸引传粉者进入入侵模块,而不是将本地物种从网络中排挤出去,它们往往会扮演新的重要拓扑角色(即网络枢纽、模块枢纽和连接器),并导致本地物种的角色转移,形成更大的、彼此之间连接更紧密的模块。虽然入侵网络中的真实区隔数量低于未入侵网络,但入侵对模块性的影响取决于研究系统。有趣的是,入侵植物的泛化程度部分解释了这一模式,更具泛化性的入侵植物导致模块性降低。我们的研究结果表明,入侵网络改变了相互作用结构,使其对模拟随机二次物种灭绝具有更强的抵抗力,但当通常高度连接的入侵植物首先灭绝时,它们变得更加脆弱。本研究强调的生物入侵改变植物-传粉者群落相互作用结构的后果和途径可能具有重要的动态和功能意义,例如,通过影响多物种相互选择的模式和协同进化过程。