Institute of Biological and Environmental Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
Mol Ecol. 2014 Sep;23(17):4256-73. doi: 10.1111/mec.12833. Epub 2014 Jul 24.
Epigenetic modification of cytosine methylation states can be elicited by environmental stresses and may be a key process affecting phenotypic plasticity and adaptation. Parasites are potent stressors with profound physiological and ecological effects on their host, but there is little understanding in how parasites may influence host methylation states. Here, we estimate epigenetic diversity and differentiation among 21 populations of red grouse (Lagopus lagopus scotica) in north-east Scotland and test for association of gastrointestinal parasite load (caecal nematode Trichostrongylus tenuis) with hepatic genome-wide and locus-specific methylation states. Following methylation-sensitive AFLP (MSAP), 129 bands, representing 73 methylation-susceptible and 56 nonmethylated epiloci, were scored across 234 individuals. The populations differed significantly in genome-wide methylation levels and were also significantly epigenetically (F(SC) = 0.0227; P < 0.001) and genetically (F(SC) = 0.0058; P < 0.001) differentiated. Parasite load was not associated with either genome-wide methylation levels or epigenetic differentiation. Instead, we found eight disproportionately differentiated epilocus-specific methylation states (F(ST) outliers) using bayescan software and significant positive and negative association of 35 methylation states with parasite load from bespoke generalized estimating equations (GEE), simple logistic regression (sam) and Bayesian environmental analysis (bayenv2). Following Sanger sequencing, genome mapping and geneontology (go) annotation, some of these epiloci were linked to genes involved in regulation of cell cycle, signalling, metabolism, immune system and notably rRNA methylation, histone acetylation and small RNAs. These findings demonstrate an epigenetic signature of parasite load in populations of a wild bird and suggest intriguing physiological effects of parasite-associated cytosine methylation.
环境压力可以引发胞嘧啶甲基化状态的表观遗传修饰,这可能是影响表型可塑性和适应的关键过程。寄生虫是宿主的强大压力源,对其产生深远的生理和生态影响,但对于寄生虫如何影响宿主的甲基化状态知之甚少。在这里,我们估计了苏格兰东北部 21 个红松鸡(Lagopus lagopus scotica)种群的表观遗传多样性和分化,并测试了胃肠道寄生虫负荷(盲肠线虫 Trichostrongylus tenuis)与肝基因组范围和局部特异性甲基化状态的关联。在甲基敏感 AFLP(MSAP)之后,在 234 个个体中,共检测到 129 个带,代表 73 个甲基化敏感和 56 个非甲基化的epiloci。种群在全基因组甲基化水平上存在显著差异,并且在表观遗传(F(SC)= 0.0227;P < 0.001)和遗传(F(SC)= 0.0058;P < 0.001)上也存在显著分化。寄生虫负荷与全基因组甲基化水平或表观遗传分化无关。相反,我们使用 bayescan 软件发现了八个不成比例分化的 epilocus 特异性甲基化状态(F(ST)异常),并且通过定制广义估计方程(GEE)、简单逻辑回归(sam)和贝叶斯环境分析(bayenv2)发现 35 个甲基化状态与寄生虫负荷呈显著正相关和负相关。在 Sanger 测序、基因组映射和基因本体论(go)注释之后,这些 epiloci 中的一些与参与细胞周期、信号转导、代谢、免疫系统调节的基因有关,特别是 rRNA 甲基化、组蛋白乙酰化和小 RNA。这些发现表明在野生鸟类种群中存在寄生虫负荷的表观遗传特征,并表明寄生虫相关的胞嘧啶甲基化具有引人注目的生理效应。