Durand Marjorie, Collombet Jean-Marc, Frasca Sophie, Begot Laurent, Lataillade Jean-Jacques, Le Bousse-Kerdilès Marie-Caroline, Holy Xavier
Département Soutien Médico-Chirugical des Forces, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France; Centre de Transfusion Sanguine des Armées, Service de Recherche, Clamart, France; INSERM U972, Hôpital Paul Brousse, Villejuif, France.
Département Soutien Médico-Chirugical des Forces, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France; Centre de Transfusion Sanguine des Armées, Service de Recherche, Clamart, France; INSERM U972, Hôpital Paul Brousse, Villejuif, France
Stem Cells Transl Med. 2014 Aug;3(8):958-68. doi: 10.5966/sctm.2013-0209. Epub 2014 Jun 18.
We investigated the effects of respiratory hypobaric hypoxia on femoral bone-defect repair in mice because hypoxia is believed to influence both mesenchymal stromal cell (MSC) and hematopoietic stem cell mobilization, a process involved in the bone-healing mechanism. To mimic conditions of non-weight-bearing limb immobilization in patients suffering from bone trauma, our hypoxic mouse model was further subjected to hind-limb unloading. A hole was drilled in the right femur of adult male C57/BL6J mice. Four days after surgery, mice were subjected to hind-limb unloading for 1 week. Seven days after surgery, mice were either housed for 4 days in a hypobaric room (FiO2 at 10%) or kept under normoxic conditions. Unsuspended control mice were housed in either hypobaric or normoxic conditions. Animals were sacrificed on postsurgery day 11 to allow for collection of both contralateral and lesioned femurs, blood, and spleen. As assessed by microtomography, delayed hypoxia enhanced bone-healing efficiency by increasing the closing of the cortical defect and the newly synthesized bone volume in the cavity by +55% and +35%, respectively. Proteome analysis and histomorphometric data suggested that bone-repair improvement likely results from the acceleration of the natural bone-healing process rather than from extended mobilization of MSC-derived osteoprogenitors. Hind-limb unloading had hardly any effect beyond delayed hypoxia-enhanced bone-healing efficiency.
我们研究了呼吸性低压缺氧对小鼠股骨骨缺损修复的影响,因为缺氧被认为会影响间充质基质细胞(MSC)和造血干细胞的动员,而这一过程参与了骨愈合机制。为了模拟骨创伤患者非负重肢体固定的情况,我们的缺氧小鼠模型进一步进行了后肢卸载。在成年雄性C57/BL6J小鼠的右股骨上钻一个孔。手术后4天,小鼠进行后肢卸载1周。手术后7天,将小鼠置于低压舱(吸入氧分数为10%)中饲养4天或保持在常氧条件下。未进行卸载的对照小鼠饲养在低压或常氧条件下。在术后第11天处死动物,以便收集对侧和损伤的股骨、血液和脾脏。通过显微断层扫描评估,延迟性缺氧分别使皮质缺损的闭合和腔内新合成骨体积增加了55%和35%,从而提高了骨愈合效率。蛋白质组分析和组织形态计量学数据表明,骨修复的改善可能是由于自然骨愈合过程的加速,而不是MSC来源的骨祖细胞的大量动员。后肢卸载除了增强延迟性缺氧的骨愈合效率外几乎没有任何影响。