Suppr超能文献

内部随机性下最优生命史与线性人口模型的统一理论

Unification theory of optimal life histories and linear demographic models in internal stochasticity.

作者信息

Oizumi Ryo

机构信息

Graduate School of Mathematical Science, University of Tokyo, Tokyo, Japan.

出版信息

PLoS One. 2014 Jun 19;9(6):e98746. doi: 10.1371/journal.pone.0098746. eCollection 2014.

Abstract

Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of "Stochastic Control Theory" in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path-integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models.

摘要

生物体的生活史会受到内部和外部随机性所产生的不确定性影响。内部随机性是由每个个体生活史中的随机性产生的,例如食物摄入、遗传特征和体型生长速率的随机性,而外部随机性则源于环境。例如,已知外部随机性往往会对种群增长率产生负面影响。最近一项在结构化线性人口模型中使用路径积分公式的理论研究表明,内部随机性可以对种群增长率产生正向或负向影响。然而,内部随机性尚未成为研究的主要课题。考虑到内部随机性对种群增长率的影响,最适应环境的生物体对受栖息地随机性影响的生活史具有最优控制。对这种控制的研究被称为最优生活计划问题。为了分析内部随机性下的最优控制,我们需要在最优生活计划问题中运用“随机控制理论”。然而,目前还没有一种理论能够将最优生活史和内部随机性统一起来。本研究聚焦于将最优生活计划问题进行扩展,以便将内部随机性的控制理论纳入线性人口模型。首先,我们通过路径积分、积分方程和转移矩阵等几种数学公式,展示了一般年龄状态线性人口模型与随机控制理论之间的关系。其次,我们将我们的理论应用于两种不同繁殖系统(单次繁殖和多次繁殖)的双资源利用模型。最后,我们表明在某一情况下资源多样性对物种很重要。我们的研究表明,这种统一理论可以解决一般年龄状态线性人口模型中生活史的风险规避问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b7/4063715/1a03d9a9de7a/pone.0098746.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验