Baeza-Baeza Juan José, García-Álvarez-Coque María Celia
Departament de Química Analítica, Universitat de València, Burjassot, Spain.
J Sep Sci. 2014 Sep;37(17):2269-77. doi: 10.1002/jssc.201400382. Epub 2014 Jul 21.
The so-called "fundamental equation for gradient elution" has been used for modeling the retention in gradient elution. In this approach, the instantaneous retention factor (k) is expressed as a function of the change in the modifier content (φ(ts )), ts being the time the solute has spent in the stationary phase. This approach can only be applied at constant flow rate and with gradients where the elution strength depends on the column length following a f(t-l/u) function, u being the linear mobile phase flow rate, and l the distance from the column inlet to the location where the solute is at time t measured from the beginning of the gradient. These limitations can be solved by using the here called "general equation for gradient elution", where k is expressed as a function of φ(t,l). However, this approach is more complex. In this work, a method that facilitates the integration of the "general equation" is described, which allows an approximate analytical solution with the quadratic retention model, improving the predictions offered by the "linear solvent strength model." It also offers direct information about the changes in the instantaneous modifier content and retention factor, and gives a meaning to the gradient retention factor.
所谓的“梯度洗脱基本方程”已被用于模拟梯度洗脱中的保留情况。在这种方法中,瞬时保留因子(k)表示为改性剂含量变化(φ(ts))的函数,ts是溶质在固定相中停留的时间。这种方法仅适用于恒定流速以及洗脱强度取决于遵循f(t - l/u)函数的柱长的梯度情况,其中u是线性流动相流速,l是从柱入口到从梯度开始计时溶质在时间t所处位置的距离。通过使用这里所谓的“梯度洗脱通用方程”可以解决这些限制,其中k表示为φ(t, l)的函数。然而,这种方法更为复杂。在这项工作中,描述了一种便于对“通用方程”进行积分的方法,该方法允许使用二次保留模型进行近似解析求解,改进了“线性溶剂强度模型”提供的预测。它还提供了关于瞬时改性剂含量和保留因子变化的直接信息,并赋予了梯度保留因子意义。