Universidad Andrés Bello, Facultad de Ciencias Biológicas, Biosystems Engineering group, 8340176 Santiago, Chile.
Microb Cell Fact. 2014 Jun 19;13:88. doi: 10.1186/1475-2859-13-88.
Pseudomnas putida is a natural producer of medium chain length polyhydroxyalkanoates (mcl-PHA), a polymeric precursor of bioplastics. A two-fold increase of mcl-PHA production via inactivation of the glucose dehydrogenase gene gcd, limiting the metabolic flux towards side products like gluconate was achieved before. Here, we investigated the overproduction of enzymes catalyzing limiting steps of mcl-PHA precursor formation.
A genome-based in silico model for P. putida KT2440 metabolism was employed to identify potential genetic targets to be engineered for the improvement of mcl-PHA production using glucose as sole carbon source. Here, overproduction of pyruvate dehydrogenase subunit AcoA in the P. putida KT2440 wild type and the Δgcd mutant strains led to an increase of PHA production. In controlled bioreactor batch fermentations PHA production was increased by 33% in the acoA overexpressing wild type and 121% in the acoA overexpressing Δgcd strain in comparison to P. putida KT2440. Overexpression of pgl-encoding 6-phosphoglucolactonase did not influence PHA production. Transcriptome analyses of engineered PHA producing P. putida in comparison to its parental strains revealed the induction of genes encoding glucose 6-phosphate dehydrogenase and pyruvate dehydrogenase. In addition, NADPH seems to be quantitatively consumed for efficient PHA synthesis, since a direct relationship between low levels of NADPH and high concentrations of the biopolymer were observed. In contrast, intracellular levels of NADH were found increased in PHA producing organisms.
Production of mcl-PHAs was enhanced in P. putida when grown on glucose via overproduction of a pyruvate dehydrogenase subunit (AcoA) in combination with a deletion of the glucose dehydrogenase (gcd) gene as predicted by in silico elementary flux mode analysis.
铜绿假单胞菌是中链长度聚羟基烷酸酯(mcl-PHA)的天然生产者,mcl-PHA 是生物塑料的聚合前体。通过失活葡萄糖脱氢酶基因 gcd ,限制代谢通量流向葡萄糖酸盐等副产物,可以将 mcl-PHA 的产量提高两倍。在这里,我们研究了过表达催化 mcl-PHA 前体形成限速步骤的酶来提高 mcl-PHA 的产量。
利用基于基因组的铜绿假单胞菌 KT2440 代谢的计算机模型,鉴定了潜在的遗传靶点,以便在以葡萄糖为唯一碳源的情况下,通过工程改造来提高 mcl-PHA 的产量。在这里,在铜绿假单胞菌 KT2440 野生型和Δgcd 突变株中过表达丙酮酸脱氢酶亚基 AcoA 导致 PHA 产量增加。在控制的生物反应器分批发酵中,与铜绿假单胞菌 KT2440 相比,在过表达 acoA 的野生型中 PHA 产量增加了 33%,在过表达 acoA 的Δgcd 菌株中增加了 121%。过表达编码 6-磷酸葡萄糖酸内酯酶的 pgl 基因不影响 PHA 产量。与亲本菌株相比,工程化生产 PHA 的铜绿假单胞菌的转录组分析显示,编码葡萄糖 6-磷酸脱氢酶和丙酮酸脱氢酶的基因被诱导。此外,由于观察到 NADPH 水平与生物聚合物的高浓度之间存在直接关系,因此 NADPH 似乎被定量消耗以有效地合成 PHA。相比之下,在产生 PHA 的生物体内发现 NADH 的细胞内水平增加。
通过在 silico 基本通量模式分析的预测,当在葡萄糖上生长时,通过过表达丙酮酸脱氢酶亚基(AcoA)并缺失葡萄糖脱氢酶(gcd)基因,铜绿假单胞菌 mcl-PHAs 的产量得到了提高。