Maillard Rodrigo A, Liu Tong, Beasley David W C, Barrett Alan D T, Hilser Vincent J, Lee J Ching
Department of Biochemistry & Molecular Biology, ‡Department of Microbiology & Immunology, §Department of Pathology, ∥Sealy Center for Vaccine Development, ⊥Institute for Human Infections and Immunity and #Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch , Galveston, Texas 77555, United States.
J Am Chem Soc. 2014 Jul 23;136(29):10315-24. doi: 10.1021/ja503318x. Epub 2014 Jul 8.
Mutations in the epitopes of antigenic proteins can confer viral resistance to antibody-mediated neutralization. However, the fundamental properties that characterize epitope residues and how mutations affect antibody binding to alter virus susceptibility to neutralization remain largely unknown. To address these questions, we used an ensemble-based algorithm to characterize the effects of mutations on the thermodynamics of protein conformational fluctuations. We applied this method to the envelope protein domain III (ED3) of two medically important flaviviruses: West Nile and dengue 2. We determined an intimate relationship between the susceptibility of a residue to thermodynamic perturbations and epitope location. This relationship allows the successful identification of the primary epitopes in each ED3, despite their high sequence and structural similarity. Mutations that allow the ED3 to evade detection by the antibody either increase or decrease conformational fluctuations of the epitopes through local effects or long-range interactions. Spatially distant interactions originate in the redistribution of conformations of the ED3 ensembles, not through a mechanically connected array of contiguous amino acids. These results reconcile previous observations of evasion of neutralization by mutations at a distance from the epitopes. Finally, we established a quantitative correlation between subtle changes in the conformational fluctuations of the epitope and large defects in antibody binding affinity. This correlation suggests that mutations that allow viral growth, while reducing neutralization, do not generate significant structural changes and underscores the importance of protein fluctuations and long-range interactions in the mechanism of antibody-mediated neutralization resistance.
抗原蛋白表位的突变可使病毒产生对抗体介导中和作用的抗性。然而,表征表位残基的基本特性以及突变如何影响抗体结合以改变病毒对中和作用的敏感性,在很大程度上仍不清楚。为了解决这些问题,我们使用了一种基于整体的算法来表征突变对蛋白质构象波动热力学的影响。我们将此方法应用于两种具有重要医学意义的黄病毒的包膜蛋白结构域III(ED3):西尼罗河病毒和登革热2型病毒。我们确定了一个残基对热力学扰动的敏感性与表位位置之间的密切关系。尽管它们的序列和结构高度相似,但这种关系仍能成功识别每个ED3中的主要表位。使ED3能够逃避抗体检测的突变,要么通过局部效应,要么通过远程相互作用,增加或减少表位的构象波动。空间上遥远的相互作用源于ED3整体构象的重新分布,而不是通过连续氨基酸的机械连接阵列。这些结果调和了先前关于远离表位处的突变逃避中和作用的观察结果。最后,我们在表位构象波动的细微变化与抗体结合亲和力的重大缺陷之间建立了定量相关性。这种相关性表明,允许病毒生长同时降低中和作用的突变不会产生显著的结构变化,并强调了蛋白质波动和远程相互作用在抗体介导的中和抗性机制中的重要性。