Skubitz Keith M, Skubitz Amy P N, Xu Wayne W, Luo Xianghua, Lagarde Pauline, Coindre Jean-Michel, Chibon Frédéric
Department of Medicine, University Hospital, Minneapolis, MN, USA.
J Transl Med. 2014 Jun 20;12:176. doi: 10.1186/1479-5876-12-176.
The biologic heterogeneity of soft tissue sarcomas (STS), even within histological subtypes, complicates treatment. In earlier studies, gene expression patterns that distinguish two subsets of clear cell renal carcinoma (RCC), serous ovarian carcinoma (OVCA), and aggressive fibromatosis (AF) were used to separate 73 STS into two or four groups with different probabilities of developing metastatic disease (PrMet). This study was designed to confirm our earlier observations in a larger independent data set.
We utilized these gene sets, hierarchical clustering (HC), and Kaplan-Meier analysis, to examine 309 STS, using Affymetrix chip expression profiling.
HC using the combined AF-, RCC-, and OVCA-gene sets identified subsets of the STS samples. Analysis revealed differences in PrMet between the clusters defined by the first branch point of the clustering dendrogram (p = 0.048), and also among the four different clusters defined by the second branch points (p < 0.0001). Analysis also revealed differences in PrMet between the leiomyosarcomas (LMS), dedifferentiated liposarcomas (LipoD), and undifferentiated pleomorphic sarcomas (UPS) (p = 0.0004). HC of both the LipoD and UPS sample sets divided the samples into two groups with different PrMet (p = 0.0128, and 0.0002, respectively). HC of the UPS samples also showed four groups with different PrMet (p = 0.0007). HC found no subgroups of the LMS samples.
These data confirm our earlier studies, and suggest that this approach may allow the identification of more than two subsets of STS, each with distinct clinical behavior, and may be useful to stratify STS in clinical trials and in patient management.
软组织肉瘤(STS)的生物学异质性,即使在组织学亚型内,也使治疗变得复杂。在早期研究中,用于区分透明细胞肾癌(RCC)、浆液性卵巢癌(OVCA)和侵袭性纤维瘤病(AF)两个亚组的基因表达模式,被用来将73例STS分为两组或四组,其发生转移性疾病的概率(PrMet)不同。本研究旨在在一个更大的独立数据集中证实我们早期的观察结果。
我们利用这些基因集、层次聚类(HC)和Kaplan-Meier分析,通过Affymetrix芯片表达谱分析来研究309例STS。
使用AF、RCC和OVCA基因集组合进行的HC识别出了STS样本的亚组。分析显示,聚类树状图第一个分支点定义的簇之间的PrMet存在差异(p = 0.048),第二个分支点定义的四个不同簇之间也存在差异(p < 0.0001)。分析还显示,平滑肌肉瘤(LMS)、去分化脂肪肉瘤(LipoD)和未分化多形性肉瘤(UPS)之间的PrMet存在差异(p = 0.0004)。LipoD和UPS样本集的HC将样本分为PrMet不同的两组(分别为p = 0.0128和0.0002)。UPS样本的HC也显示出PrMet不同的四组(p = 0.0007)。HC未发现LMS样本的亚组。
这些数据证实了我们早期的研究,并表明这种方法可能有助于识别出两个以上的STS亚组,每个亚组具有不同的临床行为,可能有助于在临床试验和患者管理中对STS进行分层。