Suppr超能文献

嗜热紫链霉菌中一种热稳定的GH62家族α-L-阿拉伯呋喃糖苷酶的阿拉伯木聚糖去分支活性的分子基础解析。

Elucidation of the molecular basis for arabinoxylan-debranching activity of a thermostable family GH62 α-l-arabinofuranosidase from Streptomyces thermoviolaceus.

作者信息

Wang Weijun, Mai-Gisondi Galina, Stogios Peter J, Kaur Amrit, Xu Xiaohui, Cui Hong, Turunen Ossi, Savchenko Alexei, Master Emma R

机构信息

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.

Department of Biotechnology and Chemical Technology, Aalto University, Espoo, Finland.

出版信息

Appl Environ Microbiol. 2014 Sep;80(17):5317-29. doi: 10.1128/AEM.00685-14. Epub 2014 Jun 20.

Abstract

Xylan-debranching enzymes facilitate the complete hydrolysis of xylan and can be used to alter xylan chemistry. Here, the family GH62 α-l-arabinofuranosidase from Streptomyces thermoviolaceus (SthAbf62A) was shown to have a half-life of 60 min at 60°C and the ability to cleave α-1,3 l-arabinofuranose (l-Araf) from singly substituted xylopyranosyl (Xylp) backbone residues in wheat arabinoxylan; low levels of activity on arabinan as well as 4-nitrophenyl α-l-arabinofuranoside were also detected. After selective removal of α-1,3 l-Araf substituents from disubstituted Xylp residues present in wheat arabinoxylan, SthAbf62A could also cleave the remaining α-1,2 l-Araf substituents, confirming the ability of SthAbf62A to remove α-l-Araf residues that are (1→2) and (1→3) linked to monosubstituted β-d-Xylp sugars. Three-dimensional structures of SthAbf62A and its complex with xylotetraose and l-arabinose confirmed a five-bladed β-propeller fold and revealed a molecular Velcro in blade V between the β1 and β21 strands, a disulfide bond between Cys27 and Cys297, and a calcium ion coordinated in the central channel of the fold. The enzyme-arabinose complex structure further revealed a narrow and seemingly rigid l-arabinose binding pocket situated at the center of one side of the β propeller, which stabilized the arabinofuranosyl substituent through several hydrogen-bonding and hydrophobic interactions. The predicted catalytic amino acids were oriented toward this binding pocket, and the catalytic essentiality of Asp53 and Glu213 was confirmed by site-specific mutagenesis. Complex structures with xylotetraose revealed a shallow cleft for xylan backbone binding that is open at both ends and comprises multiple binding subsites above and flanking the l-arabinose binding pocket.

摘要

木聚糖去分支酶有助于木聚糖的完全水解,可用于改变木聚糖的化学性质。在此,来自嗜热紫链霉菌的GH62家族α-L-阿拉伯呋喃糖苷酶(SthAbf62A)在60°C下的半衰期为60分钟,并且能够从小麦阿拉伯木聚糖中单取代的木吡喃糖基(Xylp)主链残基上切割α-1,3-L-阿拉伯呋喃糖(L-Araf);还检测到对阿拉伯聚糖以及4-硝基苯基α-L-阿拉伯呋喃糖苷的低水平活性。从小麦阿拉伯木聚糖中存在的双取代Xylp残基上选择性去除α-1,3-L-Araf取代基后,SthAbf62A还可以切割剩余的α-1,2-L-Araf取代基,证实了SthAbf62A能够去除与单取代β-D-Xylp糖以(1→2)和(1→3)连接的α-L-Araf残基。SthAbf62A及其与木四糖和L-阿拉伯糖的复合物的三维结构证实了五叶β-螺旋桨折叠,并揭示了β1和β21链之间叶片V中的分子“维可牢”结构、Cys27和Cys297之间的二硫键以及在折叠中央通道中配位的钙离子。酶-阿拉伯糖复合物结构进一步揭示了一个狭窄且看似刚性的L-阿拉伯糖结合口袋,位于β-螺旋桨一侧的中心,通过多种氢键和疏水相互作用稳定阿拉伯呋喃糖基取代基。预测的催化氨基酸朝向该结合口袋,并且通过位点特异性诱变证实了Asp53和Glu213的催化必要性。与木四糖的复合物结构揭示了一个用于木聚糖主链结合的浅裂缝,该裂缝两端开放,并且在L-阿拉伯糖结合口袋上方和侧翼包括多个结合亚位点。

相似文献

2
Constructing arabinofuranosidases for dual arabinoxylan debranching activity.
Biotechnol Bioeng. 2018 Jan;115(1):41-49. doi: 10.1002/bit.26445. Epub 2017 Oct 6.
3
Crystal structure and characterization of the glycoside hydrolase family 62 α-L-arabinofuranosidase from Streptomyces coelicolor.
J Biol Chem. 2014 Mar 14;289(11):7962-72. doi: 10.1074/jbc.M113.540542. Epub 2014 Jan 30.
5
An efficient arabinoxylan-debranching α-L-arabinofuranosidase of family GH62 from Aspergillus nidulans contains a secondary carbohydrate binding site.
Appl Microbiol Biotechnol. 2016 Jul;100(14):6265-6277. doi: 10.1007/s00253-016-7417-8. Epub 2016 Mar 5.
7
Kinetics and regioselectivity of three GH62 α-L-arabinofuranosidases from plant pathogenic fungi.
Biochim Biophys Acta Gen Subj. 2019 Jun;1863(6):1070-1078. doi: 10.1016/j.bbagen.2019.03.020. Epub 2019 Mar 30.

引用本文的文献

1
Thermostability Enhancement of GH 62 α-l-Arabinofuranosidase by Directed Evolution and Rational Design.
J Agric Food Chem. 2024 Feb 28;72(8):4225-4236. doi: 10.1021/acs.jafc.3c08019. Epub 2024 Feb 14.
2
Highly efficient synergistic activity of an α-L-arabinofuranosidase for degradation of arabinoxylan in barley/wheat.
Front Microbiol. 2023 Nov 3;14:1230738. doi: 10.3389/fmicb.2023.1230738. eCollection 2023.
3
Plastid Transformation: New Challenges in the Circular Economy Era.
Int J Mol Sci. 2022 Dec 3;23(23):15254. doi: 10.3390/ijms232315254.
5
Biochemical and Structural Characterization of Thermostable GH159 Glycoside Hydrolases Exhibiting α-L-Arabinofuranosidase Activity.
Front Mol Biosci. 2022 Jun 29;9:907439. doi: 10.3389/fmolb.2022.907439. eCollection 2022.
6
Insights into the xylan degradation system of Cellulomonas sp. B6: biochemical characterization of rCsXyn10A and rCsAbf62A.
Appl Microbiol Biotechnol. 2022 Aug;106(13-16):5035-5049. doi: 10.1007/s00253-022-12061-3. Epub 2022 Jul 8.
7
Biochemical properties of a native β-1,4-mannanase from QH1 and partial characterization of its N-glycosylation.
Biochem Biophys Rep. 2021 Feb 12;26:100922. doi: 10.1016/j.bbrep.2021.100922. eCollection 2021 Jul.
8
10
The - gene cluster of encodes GH43- and GH62-α-l-arabinofuranosidases with complementary modes of action.
Biotechnol Biofuels. 2019 Jun 10;12:144. doi: 10.1186/s13068-019-1483-y. eCollection 2019.

本文引用的文献

1
Crystal structure and characterization of the glycoside hydrolase family 62 α-L-arabinofuranosidase from Streptomyces coelicolor.
J Biol Chem. 2014 Mar 14;289(11):7962-72. doi: 10.1074/jbc.M113.540542. Epub 2014 Jan 30.
2
First structural insights into α-L-arabinofuranosidases from the two GH62 glycoside hydrolase subfamilies.
J Biol Chem. 2014 Feb 21;289(8):5261-73. doi: 10.1074/jbc.M113.528133. Epub 2014 Jan 6.
4
A novel α-L-arabinofuranosidase of family 43 glycoside hydrolase (Ct43Araf) from Clostridium thermocellum.
PLoS One. 2013 Sep 9;8(9):e73575. doi: 10.1371/journal.pone.0073575. eCollection 2013.
6
Motif-guided identification of a glycoside hydrolase family 1 α-L-arabinofuranosidase in Bifidobacterium adolescentis.
Biosci Biotechnol Biochem. 2013;77(8):1709-14. doi: 10.1271/bbb.130279. Epub 2013 Aug 7.
7
Microbial carbohydrate esterases deacetylating plant polysaccharides.
Biotechnol Adv. 2012 Nov-Dec;30(6):1575-88. doi: 10.1016/j.biotechadv.2012.04.010. Epub 2012 May 9.
8
Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains.
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6537-42. doi: 10.1073/pnas.1117686109. Epub 2012 Apr 6.
9
Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.
PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.
10
Molecular characterization and solution properties of enzymatically tailored arabinoxylans.
Int J Biol Macromol. 2011 Dec 1;49(5):963-9. doi: 10.1016/j.ijbiomac.2011.08.020. Epub 2011 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验