Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA.
PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.
Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs) that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target unique suites of available polysaccharides, a theme that likely applies to disparate bacteria from the gut and other habitats.
栖息在人类肠道中的共生细菌在利用复杂碳水化合物(主要是我们饮食中的植物细胞壁糖)方面经历了强烈的选择压力。这些多糖不能被人类酶消化,但被肠道细菌加工成可吸收的短链脂肪酸。拟杆菌门(Bacteroidetes)是成人肠道中两个主要细菌门之一,具有广泛的聚糖降解能力。这些物种使用一系列膜蛋白复合物,称为 Sus 样系统,用于代谢许多复杂碳水化合物。然而,这些系统在降解化学多样性的植物细胞壁糖 repertoire 中的作用仍然未知。在这里,我们表明两种密切相关的人类肠道拟杆菌,B. thetaiotaomicron 和 B. ovatus,能够利用几乎所有主要的植物和宿主糖,包括鼠李半乳糖醛酸 II,一种高度复杂的聚合物,被认为对微生物降解具有抗性。转录谱分析和基因失活实验揭示了编码针对各种植物多糖的单个 Sus 样系统的多糖利用基因座(PUL)的身份和特异性。比较基因组分析表明,B. ovatus 具有几个独特的 PUL,使它能够降解半纤维素多糖,而 B. thetaiotaomicron 则没有这种表型。相比之下,B. thetaiotaomicron 基因组的形状是由于参与宿主粘蛋白 O-聚糖代谢的 PUL 数量增加,而这种表型在 B. ovatus 中是无法检测到的。结合转录分析,对与 PUL 相关的混合双组分系统的纯化传感器结构域进行的结合研究表明,复杂的寡糖提供了调节信号,诱导 PUL 激活,并且每个 PUL 对特定的细胞壁聚合物具有高度特异性。这些结果提供了一种观点,即这些物种如何通过进化针对独特的可用多糖套件的基因而分化到不同的碳水化合物生态位,这一主题可能适用于来自肠道和其他栖息地的不同细菌。