Sciamanna G, Ponterio G, Tassone A, Maltese M, Madeo G, Martella G, Poli S, Schirinzi T, Bonsi P, Pisani A
Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.
Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.
Neuropharmacology. 2014 Oct;85:440-50. doi: 10.1016/j.neuropharm.2014.06.013. Epub 2014 Jun 19.
Early onset torsion dystonia (DYT1) is an autosomal dominantly inherited disorder caused by deletion in TOR1A gene. Evidence suggests that TOR1A mutation produces dystonia through an aberrant neuronal signalling within the striatum, where D2 dopamine receptors (D2R) produce an abnormal excitatory response in cholinergic interneurons (ChIs) in different models of DYT1 dystonia. The excitability of ChIs may be modulated by group I metabotropic glutamate receptor subtypes (mGlu1 and 5). We performed electrophysiological and calcium imaging recordings from ChIs of both knock-in mice heterozygous for Δ-torsinA (Tor1a(+/Δgag) mice) and transgenic mice overexpressing human torsinA (hMT1). We demonstrate that the novel negative allosteric modulator (NAM) of metabotropic glutamate 5 (mGlu) receptor, dipraglurant (ADX48621) counteracts the abnormal membrane responses and calcium rise induced either by the D2R agonist quinpirole or by caged dopamine (NPEC-Dopamine) in both models. These inhibitory effects were mimicked by two other well-characterized mGlu5 receptor antagonists, SIB1757 and MPEP, but not by mGlu1 antagonism. D2R and mGlu5 post-receptor signalling may converge on PI3K/Akt pathway. Interestingly, we found that the abnormal D2R response was prevented by the selective PI3K inhibitor, LY294002, whereas PLC and PKC inhibitors were both ineffective. Currently, no satisfactory pharmacological treatment is available for DYT1 dystonia patients. Our data show that negative modulation of mGlu5 receptors may counteract abnormal D2R responses, normalizing cholinergic cell excitability, by modulating the PI3K/Akt post-receptor pathway, thereby representing a novel potential treatment of DYT1 dystonia.
早发性扭转性肌张力障碍(DYT1)是一种由TOR1A基因缺失引起的常染色体显性遗传疾病。有证据表明,TOR1A突变通过纹状体内异常的神经元信号传导导致肌张力障碍,在不同的DYT1肌张力障碍模型中,D2多巴胺受体(D2R)在胆碱能中间神经元(ChIs)中产生异常的兴奋性反应。ChIs的兴奋性可能受I组代谢型谷氨酸受体亚型(mGlu1和5)调节。我们对杂合Δ-扭转蛋白A(Tor1a(+/Δgag)小鼠)的基因敲入小鼠和过表达人扭转蛋白A(hMT1)的转基因小鼠的ChIs进行了电生理和钙成像记录。我们证明,代谢型谷氨酸5(mGlu)受体的新型负变构调节剂(NAM)双普拉谷氨酸(ADX48621)可抵消两种模型中由D2R激动剂喹吡罗或笼形多巴胺(NPEC-多巴胺)诱导的异常膜反应和钙升高。另外两种特征明确的mGlu5受体拮抗剂SIB1757和MPEP可模拟这些抑制作用,但mGlu1拮抗剂则不能。D2R和mGlu5受体后信号传导可能汇聚于PI3K/Akt途径。有趣的是,我们发现选择性PI3K抑制剂LY294002可预防异常的D2R反应,而PLC和PKC抑制剂均无效。目前,DYT1肌张力障碍患者尚无令人满意的药物治疗方法。我们的数据表明,mGlu5受体的负调节可能通过调节PI3K/Akt受体后途径抵消异常的D2R反应,使胆碱能细胞兴奋性正常化,从而代表了一种治疗DYT1肌张力障碍的新的潜在方法。