Scarduzio Mariangela, Zimmerman Chelsea N, Jaunarajs Karen L, Wang Qin, Standaert David G, McMahon Lori L
Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Exp Neurol. 2017 Sep;295:162-175. doi: 10.1016/j.expneurol.2017.06.005. Epub 2017 Jun 3.
Balance between cholinergic and dopaminergic signaling is central to striatal control of movement and cognition. In dystonia, a common disorder of movement, anticholinergic therapy is often beneficial. This observation suggests there is a pathological increase in cholinergic tone, yet direct confirmation is lacking. In DYT1, an early-onset genetic form of dystonia caused by a mutation in the protein torsinA (TorA), the suspected heightened cholinergic tone is commonly attributed to faulty dopamine D2 receptor (D2R) signaling where D2R agonists cause excitation of striatal cholinergic interneurons (ChIs), rather than the normal inhibition of firing observed in wild-type animals, an effect known as "paradoxical excitation". Here, we provide for the first time direct measurement of elevated striatal extracellular acetylcholine (ACh) in a knock-in mouse model of human DYT1 dystonia (TorA mice), confirming a striatal hypercholinergic state. We hypothesized that this elevated extracellular ACh might cause chronic over-activation of muscarinic acetylcholine receptors (mAChRs) and disrupt normal D2R function due to their shared coupling to G-proteins. We tested this concept in vitro first using a broad-spectrum mAChR antagonist, and then using a M2/M4 mAChR selective antagonist to specifically target mAChRs expressed by ChIs. Remarkably, we found that mAChR inhibition reverses the D2R-mediated paradoxical excitation of ChIs recorded in slices from TorA mice to a typical inhibitory response. Furthermore, we recapitulated the paradoxical D2R excitation of ChIs in striatal slices from wild-type mice within minutes by simply increasing cholinergic tone through pharmacological inhibition of acetylcholinesterase (AChE) or by prolonged agonist activation of mAChRs. Collectively, these results show that enhanced mAChR tone itself is sufficient to rapidly reverse the polarity of D2R regulation of ChI excitability, correcting the previous notion that the D2R mediated paradoxical ChI excitation causes the hypercholinergic state in dystonia. Further, using a combination of genetic and pharmacological approaches, we found evidence that this switch in D2R polarity results from a change in coupling from the preferred G pathway to non-canonical β-arrestin signaling. These results highlight the need to fully understand how the mutation in TorA leads to pathologically heightened extracellular ACh. Furthermore the discovery of this novel ACh-dopamine interaction and the participation of β-arrestin in regulation of cholinergic interneurons is likely important for other basal ganglia disorders characterized by perturbation of ACh-dopamine balance, including Parkinson and Huntington diseases, l-DOPA-induced dyskinesia and schizophrenia.
胆碱能和多巴胺能信号之间的平衡是纹状体对运动和认知进行控制的核心。在肌张力障碍(一种常见的运动障碍)中,抗胆碱能疗法往往有益。这一观察结果表明胆碱能张力存在病理性增加,但缺乏直接证据。在DYT1型肌张力障碍(一种由扭转蛋白A(TorA)突变引起的早发性遗传性肌张力障碍)中,疑似升高的胆碱能张力通常归因于多巴胺D2受体(D2R)信号传导异常,即D2R激动剂会引起纹状体胆碱能中间神经元(ChIs)兴奋,而不是像在野生型动物中观察到的正常的放电抑制,这种效应被称为“反常兴奋”。在此,我们首次在人类DYT1型肌张力障碍的基因敲入小鼠模型(TorA小鼠)中直接测量了纹状体细胞外乙酰胆碱(ACh)升高,证实了纹状体高胆碱能状态。我们推测这种升高的细胞外ACh可能会导致毒蕈碱型乙酰胆碱受体(mAChRs)慢性过度激活,并由于它们与G蛋白的共同偶联而破坏正常的D2R功能。我们首先在体外使用广谱mAChR拮抗剂测试了这一概念,然后使用M2/M4 mAChR选择性拮抗剂特异性靶向ChIs表达的mAChRs。值得注意的是,我们发现抑制mAChR可将TorA小鼠脑片中记录到的D2R介导的ChIs反常兴奋逆转至典型的抑制反应。此外,我们通过药理学抑制乙酰胆碱酯酶(AChE)或通过长时间激活mAChRs的激动剂来简单地增加胆碱能张力,在几分钟内就在野生型小鼠的纹状体脑片中重现了ChIs的D2R反常兴奋。总体而言,这些结果表明增强的mAChR张力本身足以迅速逆转D2R对ChI兴奋性调节的极性,纠正了之前认为D2R介导的ChI反常兴奋导致肌张力障碍中高胆碱能状态的观念。此外,通过基因和药理学方法的结合,我们发现有证据表明D2R极性的这种转变是由于从首选的G途径偶联转变为非经典的β-抑制蛋白信号传导所致。这些结果强调了需要充分了解TorA突变如何导致病理性细胞外ACh升高。此外,这一新型ACh-多巴胺相互作用的发现以及β-抑制蛋白参与胆碱能中间神经元的调节,可能对其他以ACh-多巴胺平衡紊乱为特征的基底神经节疾病(包括帕金森病和亨廷顿病、左旋多巴诱导的运动障碍和精神分裂症)很重要。