Suppr超能文献

GPS2/KDM4A的先驱活性调节PPARγ的启动子特异性募集。

GPS2/KDM4A pioneering activity regulates promoter-specific recruitment of PPARγ.

作者信息

Cardamone M Dafne, Tanasa Bogdan, Chan Michelle, Cederquist Carly T, Andricovich Jaclyn, Rosenfeld Michael G, Perissi Valentina

机构信息

Biochemistry Department, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.

Department of Medicine, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.

出版信息

Cell Rep. 2014 Jul 10;8(1):163-76. doi: 10.1016/j.celrep.2014.05.041. Epub 2014 Jun 19.

Abstract

Timely and selective recruitment of transcription factors to their appropriate DNA-binding sites represents a critical step in regulating gene activation; however, the regulatory strategies underlying each factor's effective recruitment to specific promoter and/or enhancer regions are not fully understood. Here, we identify an unexpected regulatory mechanism by which promoter-specific binding, and therefore function, of peroxisome proliferator-activator receptor γ (PPARγ) in adipocytes requires G protein suppressor 2 (GPS2) to prime the local chromatin environment via inhibition of the ubiquitin ligase RNF8 and stabilization of the H3K9 histone demethylase KDM4A/JMJD2. Integration of genome-wide profiling data indicates that the pioneering activity of GPS2/KDM4A is required for PPARγ-mediated regulation of a specific transcriptional program, including the lipolytic enzymes adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). Hence, our findings reveal that GPS2 exerts a biologically important function in adipose tissue lipid mobilization by directly regulating ubiquitin signaling and indirectly modulating chromatin remodeling to prime selected genes for activation.

摘要

转录因子及时且选择性地募集到其合适的DNA结合位点是调控基因激活的关键步骤;然而,每种因子有效募集到特定启动子和/或增强子区域的调控策略尚未完全明确。在此,我们发现了一种意想不到的调控机制,脂肪细胞中过氧化物酶体增殖物激活受体γ(PPARγ)的启动子特异性结合及其功能需要G蛋白抑制因子2(GPS2)通过抑制泛素连接酶RNF8并稳定H3K9组蛋白去甲基化酶KDM4A/JMJD2来启动局部染色质环境。全基因组分析数据的整合表明,GPS2/KDM4A的先锋活性是PPARγ介导的特定转录程序调控所必需的,包括脂解酶脂肪甘油三酯脂肪酶(ATGL)和激素敏感性脂肪酶(HSL)。因此,我们的研究结果表明,GPS2通过直接调节泛素信号传导并间接调节染色质重塑来启动选定基因的激活,从而在脂肪组织脂质动员中发挥重要生物学功能。

相似文献

1
GPS2/KDM4A pioneering activity regulates promoter-specific recruitment of PPARγ.
Cell Rep. 2014 Jul 10;8(1):163-76. doi: 10.1016/j.celrep.2014.05.041. Epub 2014 Jun 19.
4
Reducing 14-3-3ζ expression influences adipocyte maturity and impairs function.
Am J Physiol Endocrinol Metab. 2020 Jul 1;319(1):E117-E132. doi: 10.1152/ajpendo.00093.2020. Epub 2020 May 5.
8
Serum amyloid A induces lipolysis by downregulating perilipin through ERK1/2 and PKA signaling pathways.
Obesity (Silver Spring). 2011 Dec;19(12):2301-9. doi: 10.1038/oby.2011.176. Epub 2011 Jun 23.
9
Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK.
Am J Physiol Cell Physiol. 2010 Apr;298(4):C961-71. doi: 10.1152/ajpcell.00547.2009. Epub 2010 Jan 27.
10
Habitual exercise training acts as a physiological stimulator for constant activation of lipolytic enzymes in rat primary white adipocytes.
Biochem Biophys Res Commun. 2015 Aug 14;464(1):348-53. doi: 10.1016/j.bbrc.2015.06.157. Epub 2015 Jun 30.

引用本文的文献

1
Nonproteolytic ubiquitination regulates chromatin occupancy by the NCoR/SMRT/HDAC3 corepressor complex in MCF-7 breast cancer cells.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2502805122. doi: 10.1073/pnas.2502805122. Epub 2025 Apr 30.
2
Inhibition of K63 ubiquitination by G-Protein pathway suppressor 2 (GPS2) regulates mitochondria-associated translation.
Pharmacol Res. 2024 Sep;207:107336. doi: 10.1016/j.phrs.2024.107336. Epub 2024 Jul 31.
3
GPS2 promotes erythroid differentiation in K562 erythroleukemia cells primarily via NCOR1.
Int J Hematol. 2024 Aug;120(2):157-166. doi: 10.1007/s12185-024-03797-x. Epub 2024 May 30.
6
Antagonistic action of GPS2 and KDM1A at enhancers governs alternative macrophage activation by interleukin 4.
Nucleic Acids Res. 2023 Feb 22;51(3):1067-1086. doi: 10.1093/nar/gkac1230.
7
Structure, Activity and Function of the Protein Arginine Methyltransferase 6.
Life (Basel). 2021 Sep 11;11(9):951. doi: 10.3390/life11090951.
8
Epigenetic regulation of inflammatory factors in adipose tissue.
Biochim Biophys Acta Mol Cell Biol Lipids. 2021 Nov;1866(11):159019. doi: 10.1016/j.bbalip.2021.159019. Epub 2021 Jul 29.

本文引用的文献

2
The oncogenic potential of Jumonji D2 (JMJD2/KDM4) histone demethylase overexpression.
Biochem Cell Biol. 2013 Dec;91(6):369-77. doi: 10.1139/bcb-2012-0054. Epub 2012 Dec 5.
4
KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors.
Cell. 2013 Aug 1;154(3):541-55. doi: 10.1016/j.cell.2013.06.051. Epub 2013 Jul 18.
5
Cell-specific integration of nuclear receptor function at the genome.
Wiley Interdiscip Rev Syst Biol Med. 2013 Sep-Oct;5(5):615-29. doi: 10.1002/wsbm.1231. Epub 2013 Jun 11.
6
KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells.
Cancer Res. 2013 May 15;73(10):2936-42. doi: 10.1158/0008-5472.CAN-12-4300. Epub 2013 May 3.
7
Heat shock protein 90 (Hsp90) selectively regulates the stability of KDM4B/JMJD2B histone demethylase.
J Biol Chem. 2013 May 24;288(21):14681-7. doi: 10.1074/jbc.C113.462770. Epub 2013 Apr 15.
8
Transcriptional cofactor TBLR1 controls lipid mobilization in white adipose tissue.
Cell Metab. 2013 Apr 2;17(4):575-85. doi: 10.1016/j.cmet.2013.02.010. Epub 2013 Mar 14.
9
SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation.
J Clin Invest. 2013 Jan;123(1):362-79. doi: 10.1172/JCI64052. Epub 2012 Dec 10.
10
Ghrelin and cannabinoids require the ghrelin receptor to affect cellular energy metabolism.
Mol Cell Endocrinol. 2013 Jan 30;365(2):303-8. doi: 10.1016/j.mce.2012.11.007. Epub 2012 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验