Institut für Pharmazeutische Chemie, Philipps-Universität Marburg , Marbacher Weg 6, 35032 Marburg, Germany.
J Med Chem. 2014 Jul 10;57(13):5554-65. doi: 10.1021/jm500401x. Epub 2014 Jun 23.
Drug molecules should remain uncharged while traveling through the body and crossing membranes and should only adopt charged state upon protein binding, particularly if charge-assisted interactions can be established in deeply buried binding pockets. Such strategy requires careful pKa design and methods to elucidate whether and where protonation-state changes occur. We investigated the protonation inventory in a series of lin-benzoguanines binding to tRNA-guanine transglycosylase, showing pronounced buffer dependency during ITC measurements. Chemical modifications of the parent scaffold along with ITC measurements, pKa calculations, and site-directed mutagenesis allow elucidating the protonation site. The parent scaffold exhibits two guanidine-type portions, both likely candidates for proton uptake. Even mutually compensating effects resulting from proton release of the protein and simultaneous uptake by the ligand can be excluded. Two adjacent aspartates induce a strong pKa shift at the ligand site, resulting in protonation-state transition. Furthermore, an array of two parallel H-bonds avoiding secondary repulsive effects contributes to the high-affinity binding of the lin-benzoguanines.
药物分子在体内运输和穿过细胞膜时应保持非带电状态,只有与蛋白质结合时才应采用带电状态,特别是如果可以在深埋的结合口袋中建立电荷辅助相互作用。这种策略需要仔细设计 pKa 值,并确定质子化状态是否以及在何处发生变化。我们研究了一系列与 tRNA 鸟嘌呤转移酶结合的林苯并胍与林苯并胍的质子化情况,在 ITC 测量过程中显示出明显的缓冲依赖性。通过对母体支架进行化学修饰以及 ITC 测量、pKa 计算和定点突变,可以阐明质子化部位。母体支架具有两个胍型部分,两者都可能是质子吸收的候选部位。即使是由于蛋白质释放质子和配体同时摄取质子而产生的相互补偿效应也可以排除。两个相邻的天冬氨酸在配体部位引起强烈的 pKa 偏移,导致质子化状态转变。此外,一系列两条平行的氢键避免了次级排斥效应,有助于林苯并胍的高亲和力结合。