Philipps Universität Marburg, Institut für Pharmazeutische Chemie, Marbacher Weg 6, 35032, Marburg, Germany.
Roche Innovation Center, Grenzacherstr. 124, 4070, Basel, Switzerland.
Angew Chem Int Ed Engl. 2021 Jan 4;60(1):252-258. doi: 10.1002/anie.202011295. Epub 2020 Oct 29.
Medicinal-chemistry optimization follows strategies replacing functional groups and attaching larger substituents at a promising lead scaffold. Well-established bioisosterism rules are considered, however, it is difficult to estimate whether the introduced modifications really match the required properties at a binding site. The electron density distribution and pK values are modulated influencing protonation states and bioavailability. Considering the adjacent H-bond donor/acceptor pattern of the hinge binding motif in a kinase, we studied by crystallography a set of fragments to map the required interaction pattern. Unexpectedly, benzoic acid and benzamidine, decorated with the correct substituents, are totally bioisosteric just as carboxamide and phenolic OH. A mono-dentate pyridine nitrogen out-performs bi-dentate functionalities. The importance of correctly designing pK values of attached functional groups by additional substituents at the parent scaffold is rendered prominent.
药物化学优化遵循策略,即用有前途的先导骨架替换功能团和附加较大取代基。虽然考虑了成熟的生物等排规则,但很难估计引入的修饰是否真正符合结合部位的所需性质。通过调节电子密度分布和 pK 值来影响质子化状态和生物利用度。考虑到激酶铰链结合基序的相邻氢键供体/受体模式,我们通过晶体学研究了一组片段来绘制所需的相互作用模式。出乎意料的是,用正确取代基修饰的苯甲酸和苯甲脒与羧酰胺和酚 OH 完全是生物等排的。单齿吡啶氮比双齿官能团表现更好。通过在母体骨架上附加取代基正确设计连接官能团的 pK 值的重要性凸显出来。