Larring Yngve, Vigen Camilla, Ahouanto Florian, Fontaine Marie-Laure, Peters Thijs, Smith Jens B, Norby Truls, Bredesen Rune
SINTEF Materials and Chemistry, P.O. Box 124 Blindern, Oslo NO-0314, Norway.
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, FERMiO, Gaustadalleen 21, Oslo NO-0349, Norway.
Membranes (Basel). 2012 Sep 11;2(3):665-86. doi: 10.3390/membranes2030665.
Various inorganic membranes have demonstrated good capability to separate hydrogen from other gases at elevated temperatures. Hydrogen-permeable, dense, mixed proton-electron conducting ceramic oxides offer superior selectivity and thermal stability, but chemically robust candidates with higher ambipolar protonic and electronic conductivity are needed. In this work, we present for the first time the results of various investigations of La1-xSrxCrO3-∂ membranes for hydrogen production. We aim in particular to elucidate the material's complex transport properties, involving co-ionic transport of oxide ions and protons, in addition to electron holes. This opens some new possibilities for efficient heat and mass transfer management in the production of hydrogen. Conductivity measurements as a function of pH2 at constant pO2 exhibit changes that reveal a significant hydration and presence of protons. The flux and production of hydrogen have been measured under different chemical gradients. In particular, the effect of water vapor in the feed and permeate gas stream sides was investigated with the aim of quantifying the ratio of hydrogen production by hydrogen flux from feed to permeate and oxygen flux the opposite way ("water splitting"). Deuterium labeling was used to unambiguously prove flux of hydrogen species.
各种无机膜已证明在高温下具有从其他气体中分离氢气的良好能力。透氢的致密混合质子 - 电子传导陶瓷氧化物具有卓越的选择性和热稳定性,但需要具有更高双极质子和电子传导率的化学稳定性良好的候选材料。在这项工作中,我们首次展示了对用于制氢的La1 - xSrxCrO3 - ∂ 膜进行各种研究的结果。我们尤其旨在阐明该材料复杂的传输特性,除了电子空穴外,还涉及氧离子和质子的共离子传输。这为制氢过程中的高效传热传质管理开辟了一些新的可能性。在恒定pO2下,电导率随pH2的变化测量显示出一些变化,这些变化揭示了显著的水合作用和质子的存在。已在不同化学梯度下测量了氢气的通量和产量。特别是,研究了原料气和渗透气流侧水蒸气的影响,目的是量化原料到渗透物的氢通量产生氢气与相反方向的氧通量(“水分解”)产生氢气的比例。使用氘标记来明确证明氢物种的通量。