Suppr超能文献

新生儿肝外胆管细胞的分离。

Isolation of neonatal extrahepatic cholangiocytes.

作者信息

Karjoo Sara, Wells Rebecca G

机构信息

Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia.

Department of Medicine, The Perelman School of Medicine at the University of Pennsylvania;

出版信息

J Vis Exp. 2014 Jun 5(88):51621. doi: 10.3791/51621.

Abstract

The intra and extrahepatic bile ducts of the liver are developmentally distinct, and may be differentially affected by certain diseases. However, differences between intra and extrahepatic cholangiocytes, and between neonatal and adult cells, are not well understood. Methods for the isolation of cholangiocytes from intrahepatic bile ducts are well established(1-4). Isolation of extrahepatic ductal cells, especially from the neonate, has not yet been described, although this would be of great benefit in understanding the differences between distinct cholangiocyte populations and in studying diseases such as biliary atresia that appear to target the extrahepatic ducts. Described here is an optimized technique to isolate both neonatal and adult mouse extrahepatic bile duct cells. This technique yields a pure cell population with minimal contamination from mesenchymal cells like fibroblasts. This method is based on the removal of the extrahepatic ducts and gallbladder, followed by meticulous dissection and scraping to remove fat and fibroblast layers. Structures are embedded in thick layers of collagen and cultured for approximately 3 weeks to allow outgrowth of cholangiocytes in monolayers, which can then be trypsinized and re plated for experimental use.

摘要

肝脏的肝内和肝外胆管在发育上是不同的,并且可能受到某些疾病的不同影响。然而,肝内和肝外胆管细胞之间以及新生细胞和成年细胞之间的差异尚未得到充分了解。从肝内胆管分离胆管细胞的方法已经很成熟(1-4)。尽管这对于理解不同胆管细胞群体之间的差异以及研究诸如似乎靶向肝外胆管的胆道闭锁等疾病具有很大益处,但尚未描述从肝外胆管,尤其是从新生儿中分离肝外胆管细胞的方法。本文描述了一种优化技术,用于分离新生和成年小鼠的肝外胆管细胞。该技术可产生纯净的细胞群体,来自成纤维细胞等间充质细胞的污染最小。该方法基于切除肝外胆管和胆囊,然后进行细致的解剖和刮除以去除脂肪和成纤维细胞层。将结构嵌入厚层胶原蛋白中并培养约3周,以使胆管细胞单层生长,然后可以用胰蛋白酶消化并重新铺板用于实验。

相似文献

1
Isolation of neonatal extrahepatic cholangiocytes.
J Vis Exp. 2014 Jun 5(88):51621. doi: 10.3791/51621.
2
Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury.
J Hepatol. 2020 Jan;72(1):135-145. doi: 10.1016/j.jhep.2019.08.036. Epub 2019 Sep 25.
3
Extrahepatic cholangiocyte cilia are abnormal in biliary atresia.
J Pediatr Gastroenterol Nutr. 2013 Jul;57(1):96-101. doi: 10.1097/MPG.0b013e318296e525.
5
Development and functional characterization of extrahepatic cholangiocyte lines from normal rats.
Dig Liver Dis. 2015 Nov;47(11):964-72. doi: 10.1016/j.dld.2015.07.012. Epub 2015 Jul 26.
8
A novel model of injured liver ductal organoids to investigate cholangiocyte apoptosis with relevance to biliary atresia.
Pediatr Surg Int. 2020 Dec;36(12):1471-1479. doi: 10.1007/s00383-020-04765-2. Epub 2020 Oct 21.
10
Interstitial cells of Cajal are present in human extrahepatic bile ducts.
J Gastroenterol Hepatol. 2010 Feb;25(2):277-85. doi: 10.1111/j.1440-1746.2009.05980.x. Epub 2009 Sep 27.

引用本文的文献

1
Microcystin-RR is a biliary toxin selective for neonatal extrahepatic cholangiocytes.
JHEP Rep. 2024 Sep 12;7(1):101218. doi: 10.1016/j.jhepr.2024.101218. eCollection 2025 Jan.
5
Periductal bile acid exposure causes cholangiocyte injury and fibrosis.
PLoS One. 2022 Mar 16;17(3):e0265418. doi: 10.1371/journal.pone.0265418. eCollection 2022.
6
Bile Duct-on-a-Chip.
Methods Mol Biol. 2022;2373:57-68. doi: 10.1007/978-1-0716-1693-2_4.
7
Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury.
J Hepatol. 2020 Jan;72(1):135-145. doi: 10.1016/j.jhep.2019.08.036. Epub 2019 Sep 25.
8
A Bile Duct-on-a-Chip With Organ-Level Functions.
Hepatology. 2020 Apr;71(4):1350-1363. doi: 10.1002/hep.30918. Epub 2019 Oct 28.
10
Identification of a plant isoflavonoid that causes biliary atresia.
Sci Transl Med. 2015 May 6;7(286):286ra67. doi: 10.1126/scitranslmed.aaa1652.

本文引用的文献

1
Extrahepatic cholangiocyte cilia are abnormal in biliary atresia.
J Pediatr Gastroenterol Nutr. 2013 Jul;57(1):96-101. doi: 10.1097/MPG.0b013e318296e525.
2
Development of the bile ducts: essentials for the clinical hepatologist.
J Hepatol. 2012 May;56(5):1159-1170. doi: 10.1016/j.jhep.2011.09.022. Epub 2012 Jan 13.
3
Regeneration of human extrahepatic biliary epithelium: the peribiliary glands as progenitor cell compartment.
Liver Int. 2012 Apr;32(4):554-9. doi: 10.1111/j.1478-3231.2011.02721.x. Epub 2011 Dec 15.
5
Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells.
Gastroenterology. 2011 Oct;141(4):1432-8, 1438.e1-4. doi: 10.1053/j.gastro.2011.06.049. Epub 2011 Jun 25.
6
Isolation of functional polarized bile duct units from mouse liver.
Am J Physiol Gastrointest Liver Physiol. 2001 Feb;280(2):G241-6. doi: 10.1152/ajpgi.2001.280.2.G241.
8
Isolation and culture of biliary epithelial cells from the biliary tract fraction of normal rats.
Liver. 1986 Dec;6(6):369-78. doi: 10.1111/j.1600-0676.1986.tb00306.x.
9
Isolation and morphologic characterization of bile duct epithelial cells from normal rat liver.
Gastroenterology. 1989 Nov;97(5):1236-47. doi: 10.1016/0016-5085(89)91695-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验