Department of Physiology, Wayne State University, 4116 Scott Hall, 540 E. Canfield, Detroit, MI 48201, USA.
Brain Sci. 2013 Apr 8;3(2):460-503. doi: 10.3390/brainsci3020460.
Our recently described nonlinear dynamical model of cell injury is here applied to the problems of brain ischemia and neuroprotection. We discuss measurement of global brain ischemia injury dynamics by time course analysis. Solutions to proposed experiments are simulated using hypothetical values for the model parameters. The solutions solve the global brain ischemia problem in terms of "master bifurcation diagrams" that show all possible outcomes for arbitrary durations of all lethal cerebral blood flow (CBF) decrements. The global ischemia master bifurcation diagrams: (1) can map to a single focal ischemia insult, and (2) reveal all CBF decrements susceptible to neuroprotection. We simulate measuring a neuroprotectant by time course analysis, which revealed emergent nonlinear effects that set dynamical limits on neuroprotection. Using over-simplified stroke geometry, we calculate a theoretical maximum protection of approximately 50% recovery. We also calculate what is likely to be obtained in practice and obtain 38% recovery; a number close to that often reported in the literature. The hypothetical examples studied here illustrate the use of the nonlinear cell injury model as a fresh avenue of approach that has the potential, not only to solve the brain ischemia problem, but also to advance the technology of neuroprotection.
我们最近描述的细胞损伤非线性动力学模型现应用于脑缺血和神经保护问题。我们讨论了通过时间过程分析来测量全脑缺血损伤动力学的方法。使用模型参数的假设值来模拟拟议实验的解决方案。这些解决方案根据“主分岔图”来解决全脑缺血问题,主分岔图显示了任意致命脑血流 (CBF) 下降持续时间的所有可能结果。全脑缺血主分岔图:(1) 可以映射到单个局灶性缺血损伤,以及 (2) 揭示了所有易受神经保护影响的 CBF 下降。我们通过时间过程分析模拟测量神经保护剂,揭示了出现的非线性效应,为神经保护设定了动力学限制。使用过于简化的中风几何形状,我们计算出理论上最大的保护作用约为 50%的恢复。我们还计算了在实践中可能获得的保护作用,得到了 38%的恢复;这一数字接近文献中经常报道的数字。这里研究的假设示例说明了将非线性细胞损伤模型用作一种新方法的潜力,它不仅有可能解决脑缺血问题,还有可能推进神经保护技术。