Suppr超能文献

结合计算建模和神经影像学技术研究大脑中的多种类别学习系统。

Combining computational modeling and neuroimaging to examine multiple category learning systems in the brain.

机构信息

Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.

Department of Psychology, Northwestern University, Evanston, IL 60208, USA.

出版信息

Brain Sci. 2012 Apr 23;2(2):176-202. doi: 10.3390/brainsci2020176.

Abstract

Considerable evidence has argued in favor of multiple neural systems supporting human category learning, one based on conscious rule inference and one based on implicit information integration. However, there have been few attempts to study potential system interactions during category learning. The PINNACLE (Parallel Interactive Neural Networks Active in Category Learning) model incorporates multiple categorization systems that compete to provide categorization judgments about visual stimuli. Incorporating competing systems requires inclusion of cognitive mechanisms associated with resolving this competition and creates a potential credit assignment problem in handling feedback. The hypothesized mechanisms make predictions about internal mental states that are not always reflected in choice behavior, but may be reflected in neural activity. Two prior functional magnetic resonance imaging (fMRI) studies of category learning were re-analyzed using PINNACLE to identify neural correlates of internal cognitive states on each trial. These analyses identified additional brain regions supporting the two types of category learning, regions particularly active when the systems are hypothesized to be in maximal competition, and found evidence of covert learning activity in the "off system" (the category learning system not currently driving behavior). These results suggest that PINNACLE provides a plausible framework for how competing multiple category learning systems are organized in the brain and shows how computational modeling approaches and fMRI can be used synergistically to gain access to cognitive processes that support complex decision-making machinery.

摘要

大量证据支持人类类别学习有多个神经支持系统,一个基于有意识的规则推理,一个基于无意识的信息整合。然而,很少有研究尝试研究类别学习过程中的潜在系统相互作用。PINNACLE(并行交互神经网络在类别学习中活跃)模型包含多个竞争提供视觉刺激分类判断的分类系统。纳入竞争系统需要包括与解决这种竞争相关的认知机制,并在处理反馈时产生潜在的信用分配问题。假设的机制对内部心理状态做出预测,这些预测并不总是反映在选择行为中,但可能反映在神经活动中。使用 PINNACLE 对之前的两项关于类别学习的功能磁共振成像(fMRI)研究进行了重新分析,以确定每次试验中内部认知状态的神经相关性。这些分析确定了支持两种类型类别学习的额外脑区,这些脑区在系统被假设处于最大竞争时特别活跃,并发现了“非系统”(当前不驱动行为的类别学习系统)中的隐性学习活动的证据。这些结果表明,PINNACLE 为竞争的多个类别学习系统在大脑中的组织提供了一个合理的框架,并展示了计算建模方法和 fMRI 如何协同使用,以深入了解支持复杂决策机制的认知过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/4061791/f2a0ad064b22/brainsci-02-00176-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验