Kanhere Pushkar, Shenai Prathamesh, Chakraborty Sudip, Ahuja Rajeev, Zheng Jianwei, Chen Zhong
Energy Research Institute @ NTU, 1 CleanTech Loop, CleanTech One, Singapore 637141.
Phys Chem Chem Phys. 2014 Aug 14;16(30):16085-94. doi: 10.1039/c4cp01000k.
Electronic structures of doped NaTaO3 compounds are of significant interest to visible light photocatalysis. This work involves the study of the band gap, band edge potentials, and thermodynamic stability of certain mono-doped and co-doped NaTaO3 systems, using DFT-PBE as well as hybrid (PBE0) functional calculations. Doping of certain non-magnetic cations (Ti, V, Cu, Zn, W, In, Sn, Sb, Ce, and La), certain anions (N, C, and I), and certain co-dopant pairs (W-Ti, W-Ce, N-I, N-W, La-C, Pb-I, and Cu-Sn) is investigated. Our calculations suggest that substitutional doping of Cu at the Ta site, Cu at the Na site, and C at the O site narrows the band gap of NaTaO3 to 2.3, 2.8, and 2.1 eV, respectively, inducing visible light absorption. Additionally, passivated co-doping of Pb-I and N-W narrows the band gap of NaTaO3 to the visible region, while maintaining the band potentials at favorable positions. Hybrid density of states (DOS) accurately describe the effective band potentials and the location of mid-gap states, which shed light on the possible mechanism of photoexcitation in relation to the photocatalysis reactions. Furthermore, the thermodynamic stability of the doped systems and defect pair binding energies of co-doped systems are discussed in detail. The present results provide useful insights into designing new photocatalysts based on NaTaO3.
掺杂的 NaTaO₃ 化合物的电子结构对于可见光光催化具有重要意义。这项工作涉及使用 DFT - PBE 以及杂化(PBE0)泛函计算来研究某些单掺杂和共掺杂 NaTaO₃ 体系的带隙、带边电势和热力学稳定性。研究了某些非磁性阳离子(Ti、V、Cu、Zn、W、In、Sn、Sb、Ce 和 La)、某些阴离子(N、C 和 I)以及某些共掺杂对(W - Ti、W - Ce、N - I、N - W、La - C、Pb - I 和 Cu - Sn)的掺杂情况。我们的计算表明,在 Ta 位点掺杂 Cu、在 Na 位点掺杂 Cu 以及在 O 位点掺杂 C 分别将 NaTaO₃ 的带隙缩小至 2.3、2.8 和 2.1 eV,从而诱导可见光吸收。此外,Pb - I 和 N - W 的钝化共掺杂将 NaTaO₃ 的带隙缩小至可见光区域,同时将带电势维持在有利位置。混合态密度(DOS)准确地描述了有效的带电势和带隙中间态的位置,这为与光催化反应相关的光激发可能机制提供了线索。此外,还详细讨论了掺杂体系的热力学稳定性和共掺杂体系的缺陷对结合能。目前的结果为基于 NaTaO₃ 设计新型光催化剂提供了有用的见解。