Suppr超能文献

血管内皮生长因子受体-2(VEGFR-2)抑制剂的计算机模拟筛选及体外验证

In-silico screening and in-vitro validation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) inhibitors.

作者信息

Saraswat Deepika, Nehra Sarita, Chaudhary Kamal Kumar, Prasad C V S Siva

机构信息

Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi- 54, India.

Division of Applied Sciences & IRCB, Indian Institute of Information Technology, Deoghat, Jhalwa, Allahabad-12, India.

出版信息

Bioinformation. 2014 May 20;10(5):273-80. doi: 10.6026/97320630010273. eCollection 2014.

Abstract

VEGFR-2 tyrosine kinase receptor draws attention of the scientific fraternity in drug discovery for its important role in cancer, cardiopulmonary, cardiovascular diseases etc. Hence there is a need for novel VEGFR-2 inhibitors screening and testing for their biological activities. The 3D-structure was collected from PDB and stability was checked by using WHATIF and PROCHECK programs and subjected for virtual screening on Zinc database. We used virtual screening method to screen new VEGFR-2 blocker molecules based on their binding energies and then docked with active site on the receptor with the help of AUTODOCK software. Based on the results obtained top three molecules (VRB1-3) were selected and tested in Cardiomyocytes H9c2 cells for cell viability under hypoxic condition. The invitro studies showed VRB2 as the best molecule among the selected three molecules as well as with a standard commercial drug Sunitinib.

摘要

血管内皮生长因子受体-2(VEGFR-2)酪氨酸激酶受体因其在癌症、心肺疾病、心血管疾病等方面的重要作用,在药物研发领域引起了科学界的关注。因此,需要对新型VEGFR-2抑制剂进行筛选,并测试其生物活性。从蛋白质数据银行(PDB)收集三维结构,使用WHATIF和PROCHECK程序检查其稳定性,并在锌数据库上进行虚拟筛选。我们采用虚拟筛选方法,根据结合能筛选新的VEGFR-2阻断分子,然后借助AUTODOCK软件将其与受体的活性位点对接。根据所得结果,选择了排名前三的分子(VRB1-3),并在缺氧条件下的心肌细胞H9c2中测试其细胞活力。体外研究表明,VRB2是所选三个分子中以及与标准商业药物舒尼替尼相比最好的分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e47/4070036/60da68a27606/97320630010273F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验