Puiggros Anna, Blanco Gonzalo, Espinet Blanca
Laboratori de Citogenètica Molecular, Servei de Patologia, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain ; GRETNHE, Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Doctor Aiguader 88, 08003 Barcelona, Spain.
Laboratori de Citogenètica Molecular, Servei de Patologia, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain ; GRETNHE, Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Doctor Aiguader 88, 08003 Barcelona, Spain ; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain.
Biomed Res Int. 2014;2014:435983. doi: 10.1155/2014/435983. Epub 2014 May 22.
Chromosomal abnormalities in chronic lymphocytic leukemia (CLL) are detected in up to 80% of patients. Among them, deletions of 11q, 13q, 17p, and trisomy 12 have a known prognostic value and play an important role in CLL pathogenesis and evolution, determining patients outcome and therapeutic strategies. Standard methods used to identify these genomic aberrations include both conventional G-banding cytogenetics (CGC) and fluorescence in situ hybridization (FISH). Although FISH analyses have been implemented as the gold standard, CGC allows the identification of chromosomal translocations and complex karyotypes, the latest associated with poor outcome. Genomic arrays have a higher resolution that allows the detection of cryptic abnormalities, although these have not been fully implemented in routine laboratories. In the last years, next generation sequencing (NGS) methods have identified a wide range of gene mutations (e.g., TP53, NOTCH1, SF3B1, and BIRC3) which have improved our knowledge about CLL development, allowing us to refine both the prognostic subgroups and better therapeutic strategies. Clonal evolution has also recently arisen as a key point in CLL, integrating cytogenetic alterations and mutations in a dynamic model that improve our understanding about its clinical course and relapse.
高达80%的慢性淋巴细胞白血病(CLL)患者可检测到染色体异常。其中,11q、13q、17p缺失以及12号染色体三体具有已知的预后价值,在CLL的发病机制和演变中起重要作用,决定着患者的预后和治疗策略。用于识别这些基因组畸变的标准方法包括传统的G显带细胞遗传学(CGC)和荧光原位杂交(FISH)。尽管FISH分析已被用作金标准,但CGC能够识别染色体易位和复杂核型,后者与不良预后相关。基因组阵列具有更高的分辨率,能够检测隐匿性异常,不过这些方法尚未在常规实验室中得到充分应用。近年来,新一代测序(NGS)方法已识别出多种基因突变(如TP53、NOTCH1、SF3B1和BIRC3),这加深了我们对CLL发展的认识,使我们能够优化预后亚组并制定更好的治疗策略。克隆进化最近也成为CLL的一个关键点,它将细胞遗传学改变和突变整合到一个动态模型中,增进了我们对其临床病程和复发的理解。